基础医学核磁共振波谱案例.ppt

  1. 1、本文档共73页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
(10.13) ( ) 这样,化学位移(δ)就成了一个无因次的数了,因△v是Hz 单位表示的化学位移,分子以Hz,分母以MHz来表示,因此,δ是以百万分之一(ppm)为单位的参数(△v和v (ref) 相比仅为百万分之几) 由此,化学位移成为一个无因次的数,并以多少 个ppm来表示。 (5.14) 三、标准氢核 理想的标准氢核应是多层没有电子屏蔽的裸露氢核,但实际上是做不到的。因此常用具有一尖锐共振峰的化合物代替,其中常被用来加入待测样品中作为内标物的化合物是四甲基硅烷(tetramethylsilane 简称TMS)。由于它的结构对称,波谱图上只能给出一个尖锐的单峰;加以屏蔽作用较强,共振峰位于较高磁场,绝大多数的有机化合物氢核共振峰均将出现在它的左侧,因此用它作为参考标准是很方便的。此外它还有沸点低,易回收样品,性质不活泼,与样品不能发生缔合以及可使溶剂位移影响降低至最小等优点。 按照IUPAC的建议,通常把TMS峰位规定为零,待测氢核共振峰则按左正右负的原则,分别用+δ及-δ表示,此外,也还有用τ值表示化学位移的方法(注意:τ=10-δ)。 例如,在60MH仪器上测得的1H-NMR谱上,某化合物的CH3氢核峰位与TMS峰相差134Hz,而CH2氢核峰位与TMS相差240Hz,故两者的化学位移值分别为: δ(CH3)=[(134-0/60×106]×106 = 2.23 δ(CH2)=[(240-0/60×106]×106 = 4.00 但同一化合物在100MHz仪器测得的1H-NMR谱上,两者化学位移值(δ)虽无改变,但它们与TMS峰的间隔以及两者之间的间隔(△v)却明显增大了。CH3基为223Hz,CH2基则为400Hz。由此可见,随着照射用电磁辐射频率的增大,共振峰频率及NMR谱中横坐标的幅度也相应增大,但化学位移值并无改变 四、 影响化学位移的因素 1H核的核外电子云在外加磁场的作用下,产生对抗磁场,此对抗磁场对外加磁场产生屏蔽效应,因而产生了化学位移。由于有机化合物分子中各个1H核所处的化学环境不同,产生的化学位移也不同,影响化学位移的因素有如下几种。 1、诱导效应 对于所要研究的1H核,是由电子云包围着的,核周围的电子在外加磁场的作用下,产生与外加磁场方向相反的感应磁场。这个屏蔽效应显然与质子周围的电子云密度有关。电子云密度越大,则对核产生的屏蔽作用越强。而影响电子云密度的一个重要因素,就是与质子相连接的原子或基团的电负性的大小有关。电负性大的取代基(吸电子基团),可使邻近氢核的电子云密度减少(去屏蔽效应),导致该质子的共振信号向低场移动,化学位移左移;电负性小的取代基(推电子基团),可使邻近氢核的电子云密度增加(屏蔽效应),导致该质子的共振信号向高场移动,化学位移右移。 2、磁各向异性效应 除电子屏蔽作用外,化学位移还受到一些别的因素的影响。实践证明,化学键尤其是π键,因电子的流动将产生一个小的诱导磁场,并通过空间影响到邻近的氢核。这个由化学键产生的第二磁场是各向异性的,即在化学键周围是不对称的,有的地方与外加磁场方向一致,将增加外加磁场,并使该处氢核共振移向低磁场处(去屏蔽效应),故化学位移值增大;有的地方与外加磁场方向相反,将削弱外加磁场,并使该处氢核共振移向高磁场处(屏蔽效应),故化学位移值减小。这种效应叫做磁的各向异性效应(magnetic anisotropic effect) 在含有π键的分子中,如芳香系统、烯烃、羰基、炔烃等,其磁的各向异性效应对化学位移的影响十分重要 。 i 芳烃 以苯环为例,在外加磁场B0条件下,苯环π电子的电子流系统产生的磁的各向异性效应如图10.6 图10.6 苯环中由π电子诱导环流产生的磁 显然,在苯环平面的上下方,因环电流形成的第二磁场方向相反,将使该处氢核共振信号移向高磁场处,化学位移值减小,故为屏蔽区。而其它方向,如苯环周围,则因两者方向正好一致,将使氢核共振信号移向低磁场处,因此化学位移值增大,故为去屏蔽区。 屏蔽区位于苯环的上下方,而苯环平面为去屏蔽区,故苯环上1H核的δ= 7.27ppm ii 双键化合物 以醛基为例,在一外加磁场B0条件下,因—C=O基π电子流的磁的各向异性效应,如图10.7 图10.7 双键质子的去屏蔽 显然,由于环电子流与C=O平行,故上下为正屏蔽区,左右为去屏蔽区,氢核共振信号将发生在很低的磁场处。故醛基上1H核的 δ = 9~

文档评论(0)

502992 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档