- 1、本文档共97页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
42 两种流态与雷诺数23
流体力学 泵与风机 第一部分 流体力学 4 流动阻力与能量损失 4 流动阻力与能量损失 【知识点】 流动阻力与水头损失的分类,粘性流体运动的两种流态,沿程水头损失与切应力的关系,圆管中的层流运动,紊流运动,局部水头损失,边界层概念,绕流运动及绕流阻力和升力 4 流动阻力与能量损失 【能力目标】 熟练识记:水头损失的分类和水头损失的一般表达式,粘性流体运动的两种流态,雷诺数及其物理意义,水力半径的表示,均匀流动方程式,圆管过流断面上的切应力分布,圆管层流、紊流运动的特性,紊流阻力分区及各区沿程摩阻系数的影响因素,绕流阻力及升力的概念; 领会:以水力半径为特征的临界雷诺数,层流、紊流的理论分析方法,尼古拉兹实验的意义,莫迪图及其意义,局部水头损失产生的原因,边界层的分离现象; 熟练掌握及运用:能够利用临界雷诺数熟练进行两种流态的判别,能够依据均匀流动的沿程水头损失和基本方程式进行均匀流动的计算,能够利用经验公式确定沿程阻系数并计算局部水头损失。 4 流动阻力与能量损失 实际流体在流动过程中,流体之间因相对运动切应力作功,以及流体与固壁之间摩擦力的作功,都是靠损失流体自身所具有的机械能来补偿的。这部分能量均转化为热能。这种引起流动能量损失的阻力与流体的粘滞性和惯性,与固壁对流体的阻滞作用和扰动作用有关。因此,为了得到能量损失的规律,必须同时分析各种阻力的特性,研究壁面特征的影响,以及产生各种阻力的机理。 能量损失一般有两种表示方法:对于液体,通常用单位重量流体的能量损失(或称水头损失) hw来表示;对于气体,则常用单位体积内的流体的能量损失(或称压强损失)pw来表示。它们之间的关系是: pw=γhw 4 流动阻力与能量损失 4 流动阻力与能量损失 4.1 流动阻力与能量损失的两种形式 流体流动的能量损失与流体的运动状态和流动边界条件密切相关。根据流体接触的边壁沿程是否变化,把能量损失分为两种形式:沿程损失和局部损失。 如图4.1所示,在边壁沿程不变(边壁形状、尺寸、流动方向均无变化)的管段上,流动为均匀流时,流层与流层之间或质点之间只存在沿程不变的切应力,称为沿程阻力。克服沿程阻力引起的能量损失称为沿程损失,以hf表示。由于沿程损失沿管段均布,即与管段的长度成正比,所以也称为长度损失。在长直渠道和等径有压输水管道中的流动都是以沿程损失为主的流动。 4.1 流动阻力与能量损失的两种形式 4.1 流动阻力与能量损失的两种形式 在边壁沿流程急剧改变的区域,阻力主要集中在该区域内及其附近,这种集中分布的阻力称为局部阻力。克服局部阻力引起的能量损失称为局部损失,以hj表示。如图4.1所示的转弯、突然放大、突然收缩、闸门等处,都会产生局部阻力,从而引起相应的局部水头损失。引起局部阻力的原因是由于漩涡区的产生和速度方向和大小的变化。局部水头损失是在一段流程上、甚至相当长的一段流程上完成的,但是为了方便起见,在流体力学中通常把它作为一个断面上的集中水头损失来处理。 4.1 流动阻力与能量损失的两种形式 能量损失的计算公式用水头损失表示时,为沿程水头损失(达西公式): 局部水头损失: 用压强损失表示时,则为 4.1 流动阻力与能量损失的两种形式 式中 λ——沿程阻力系数; L ——管路长度,m; d ——管径,m; v ——管路断面平均流速,m/s; g ——重力加速度,m/s2; ζ——局部阻力系数; ρ——流体的密度,kg/m3。 整个管路的能量损失等于各管段的沿程损失和各局部损失的之和。即 4.2 两种流态与雷诺数 4.2 两种流态与雷诺数 从19世纪初期起,一些研究者发现,在细管中水头损失与平均流速存在一定的关系,水头损失的变化有规律可循。水头损失的变化规律,是水流内部结构从量变到质变的变化过程的必然反应。通过大量的实验研究和工程实践,人们注意到流体运动有两种结构不同的流动状态,能量损失的规律与流态密切相关。 4.2 两种流态与雷诺数 1883年英国物理学家雷诺在如图4.2所示的装置上进行了流态实验。 实验时,水箱A中水位恒定,水流通过玻璃管B可以恒定出流,阀门K用以调节管内流量,水箱上部容器D中盛有容重与水相近的颜色水,可以经过细管E注入玻璃管B中,阀门F用以控制颜色水流量。 4.2 两种流态与雷诺数 实验开始,先将B管末端阀门K微微开启,使水在管内缓慢流动。然后打开E管上的阀门F,使少量颜色水注入玻璃管内,这时可以看到一股边界非常清晰的带颜色细直流束,它与周围清水互不掺混,如图4.2(a)所示。这一现象表明玻璃管B内的水流呈层状流
文档评论(0)