一元线性回归-参数估计.ppt

  1. 1、本文档共29页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
一、一元线性回归模型的基本假设 二、参数的普通最小二乘估计(OLS) 三、参数估计的最大或然法(ML) 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干 扰项方差的估计 二、参数的普通最小二乘估计(OLS) 给定一组样本观测值(Xi, Yi)(i=1,2,…n)要求样本回归函数尽可能好地拟合这组值. 普通最小二乘法(Ordinary least squares, OLS)给出的判断标准是:二者之差的平方和 三、参数估计的最大或然法(ML) 最大或然法(Maximum Likelihood,简称ML),也称最大似然法,是不同于最小二乘法的另一种参数估计方法,是从最大或然原理出发发展起来的其它估计方法的基础。 基本原理: 对于最大或然法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大。 四、最小二乘估计量的性质 当模型参数估计出后,需考虑参数估计值的精度,即是否能代表总体参数的真值,或者说需考察参数估计量的统计性质。 * * §2.2 一元线性回归模型的参数估计 单方程计量经济学模型分为两大类: 线性模型和非线性模型 线性模型中,变量之间的关系呈线性关系 非线性模型中,变量之间的关系呈非线性关系 一元线性回归模型:只有一个解释变量 i=1,2,…,n Y为被解释变量,X为解释变量,?0与?1为待估参数, ?为随机干扰项 回归分析的主要目的是要通过样本回归函数(模型)SRF尽可能准确地估计总体回归函数(模型)PRF。 估计方法有多种,其种最广泛使用的是普通最小二乘法(ordinary least squares, OLS)。 为保证参数估计量具有良好的性质,通常对模型提出若干基本假设。 注:实际这些假设与所采用的估计方法紧密相关。 一、线性回归模型的基本假设 假设1、解释变量X是确定性变量,不是随机变量; 假设2、随机误差项?具有零均值、同方差和不序列相关性: E(?i)=0 i=1,2, …,n Var (?i)=??2 i=1,2, …,n Cov(?i, ?j)=0 i≠j i,j= 1,2, …,n 假设3、随机误差项?与解释变量X之间不相关: Cov(Xi, ?i)=0 i=1,2, …,n 假设4、?服从零均值、同方差、零协方差的正态分布 ?i~N(0, ??2 ) i=1,2, …,n 1、如果假设1、2满足,则假设3也满足; 2、如果假设4满足,则假设2也满足。 注意: 以上假设也称为线性回归模型的经典假设或高斯(Gauss)假设,满足该假设的线性回归模型,也称为经典线性回归模型(Classical Linear Regression Model, CLRM)。 另外,在进行模型回归时,还有两个暗含的假设: 假设5:随着样本容量的无限增加,解释变量X的样本方差趋于一有限常数。即 假设6:回归模型是正确设定的 假设5旨在排除时间序列数据出现持续上升或下降的变量作为解释变量,因为这类数据不仅使大样本统计推断变得无效,而且往往产生所谓的伪回归问题(spurious regression problem)。 假设6也被称为模型没有设定偏误(specification error) 最小。 方程组(*)称为正规方程组(normal equations)。 记 上述参数估计量可以写成: 称为OLS估计量的离差形式(deviation form)。 由于参数的估计结果是通过最小二乘法得到的,故称为普通最小二乘估计量(ordinary least squares estimators)。 顺便指出 ,记 则有 可得 (**)式也称为样本回归函数的离差形式。 (**) 注意: 在计量经济学中,往往以小写字母表示对均值的离差。 在满足基本假设条件下,对一元线性回归模型: 随机抽取n组样本观测值(Xi, Yi)(i=1,2,…n)。 那么Yi服从如下的正态分布: 于是,Y的概率密度函数为 (i=1,2,…n) 假如模型的参数估计量已经求得,为 因为Yi是相互独立的,所以的所有样本观测值的联合概率,也即或

文档评论(0)

wendan118 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档