第三章晶体硅太阳能电池的基本原理讲述介绍.ppt

第三章晶体硅太阳能电池的基本原理讲述介绍.ppt

  1. 1、本文档共43页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
上述方程显示了VOC取决于太阳能电池的饱和电流和光生电流。由于短路电流的变化很小,而饱和电流的大小可以改变几个数量级,所以主要影响是饱和电流。饱和电流I0主要取决于电池的复合效应。即可以通过测量开路电压来算出电池的复合效应。实验室测得的硅太阳能电池在AM1.5光谱下的最大开路电压能达到720mV,而商业用太阳能电池通常为600mV。 通过把输出电流设置成零,便可得到太阳能电池的开路电压方程: 填充因子被定义为电池的最大输出功率与开路VOC和ISC的乘积的比值。 短路电流和开路电压分别是太阳能电池能输出的最大电流和最大电压。然而,当电池输出状态在这两点时,电池的输出功率都为零。“填充因子”,通常使用它的简写“FF”,是由开路电压VOC和短路电流ISC共同决定的参数,它决定了太阳能电池的输出效率。从图形上看,FF就是能够占据IV曲线区域最大的面积。如下图所示。 太阳能电池的转换:太阳电池接受的最大功率与入射到该电池上的全部辐射功率的百分比。 Um、Im分别为最大功率点的电压 At为包括栅线面积在内的太阳电池总面积 Pin为单位面积入射光的功率。 在太阳能电池中,受温度影响最大的参数是开路电压。温度的改变对伏安曲线的影响如下图所示。 短路电流ISC提高幅度很小 温度较高的电池 开路电压Voc下降幅度大 太阳辐照度对太阳能电池的伏安特性的影响 短路电流ISC随着聚光呈线性上升 开路电压随光强呈对数上升 3.3.4 影响太阳电池转换效率的因素 1. 禁带宽度 VOC随Eg的增大而增大,但另一方面,ISC随Eg的增大而减小。结果是可期望在某一个确定的Eg随处出现太阳电池效率的峰值。 随温度的增加,效率η下降。ISC对温度T不很敏感,温度主要对VOC起作用。 对于Si,温度每增加10C,VOC下降室温值的0.4%,也因而降低约同样的百分数。例如,一个硅电池在200C时的效率为20%,当温度升到1200C时,效率仅为12%。又如GaAs电池,温度每升高10C,VOC降低1.7mv 或降低0.2%。 2. 温度 希望载流子的复合寿命越长越好,这主要是因为这样做ISC大。少子长寿命也会减小暗电流并增大VOC。在间接带隙半导体材料如Si中,离结100μm处也产生相当多的载流子,所以希望它们的寿命能大于1μs。在直接带隙材料,如GaAs或Gu2S中,只要10ns的复合寿命就已足够长了。 达到长寿命的关键是在材料制备和电池的生产过程中,要避免形成复合中心。在加工过程中,适当而且经常进行工艺处理,可以使复合中心移走,因而延长寿命。 将太阳光聚焦于太阳电池,可使一个小小的太阳电池产生出大量的电能。设想光强被浓缩了X倍,单位电池面积的输入功率和JSC都将增加X倍,同时VOC也随着增加(kT/q)lnX倍。因而输出功率的增加将大大超过X倍,而且聚光的结果也使转换效率提高了。 3. 复合寿命 4. 光强 5. 掺杂浓度及剖面分布 对VOC有明显的影响的另一因素是掺杂浓度。虽然Nd和Na出现在Voc定义的对数项中,它们的数量级也是很容易改变的。掺杂浓度愈高,Voc愈高。一种称为重掺杂效应的现象近年来已引起较多的关注,在高掺杂浓度下,由于能带结构变形及电子统计规律的变化,所有方程中的Nd和Na都应以(Nd)eff和(Na)eff代替。如图2.18。既然(Nd)eff和(Na)eff显现出峰值,那么用很高的Nd和Na不会再有好处,特别是在高掺杂浓度下寿命还会减小。 高掺杂效应。随掺杂浓度增加有效掺杂浓度饱和,甚至会下降 目前,在Si太阳电池中,掺杂浓度大约为1016cm-3,在直接带隙材料制做的太阳电池中约为1017 cm-3,为了减小串联电阻,前扩散区的掺杂浓度经常高于1019 cm-3,因此重掺杂效应在扩散区是较为重要的。 当Nd和Na或(Nd)eff和(Na)eff不均匀且朝着结的方向降低时,就会建立起一个电场,其方向能有助于光生载流子的收集,因而也改善了ISC。这种不均匀掺杂的剖面分布,在电池基区中通常是做不到的;而在扩散区中是很自然的。 6. 表面复合速率 低的表面复合速率有助于提高ISC,并由于I0的减小而使VOC改善。前表面的复合速率测量起来很困难,经常被假设为无穷大。一种称为背表面场(BSF)电池设计为,在沉积金属接触之前,电池的背面先扩散一层P+附加层。 背表面场电池。在P/P+结处的电场妨碍电子朝背表面流动 7. 串联电阻 在任何一个实际的太阳电池中,都存在着串联电阻,其来源可以是引线、金属接触栅或电池体电阻。不过通常情况下,串联电阻主要来自薄扩散层。PN 结收集的电流必须经过表面薄层再流入最靠近的金属导线,这就是一条存在电阻的路线,显然通过金属线的密布可以使串联电阻减小。串联电阻RS 的影响是改变I-V 曲线的位置

文档评论(0)

1112111 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档