利用被困体积提高轴向柱塞泵的容积效率.docx

利用被困体积提高轴向柱塞泵的容积效率.docx

  1. 1、本文档共21页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
利用被困体积提高轴向柱塞泵的容积效率

附件1:外文资料翻译译文利用被困体积提高轴向柱塞泵的容积效率研究分析结果显示,标准配流盘设计因为有不受控制地膨胀和压缩的流体发生经过插槽本身而产生一种容积损失。通过去除这些插槽同时采用被困容积式,真正起到改善柱塞泵的容积效率的结果。虽然目的并不在于研究适合所有柱塞泵的理想配流盘设计,但是该报告的确在被困容积的应用方面提供了理论依据,并且也对解决配流盘的整体设计中的问题进行了进一步的探索。柱塞泵的工作和受カ在这一节中,推导出了和轴向柱塞泵操纵效率有关的方程。注意:这里的效率在通篇中仅指和流体压缩损失有关的效率。这次分析由泵的单一柱塞的机械和液压力图表展开。利用该图表,分析计算了作用在柱塞上的机械力和作用在泵排油区一液体单元的液压力。通过输出功率和输入功率的比值,推导出了泵的瞬时功率的表达式。该表达式表明,为了计算泵的效率,必须考虑到必须的动力学、柱塞腔内的压力和流入流出柱塞腔的体积。这些数值来源于本文接下来的章节中。N个柱塞X周正方向的力Fn。这个力是由于斜盘对滑靴的反作用力而使柱塞挤入。同理,在柱塞排油的一腔流体上也作用了一压力Pn。该压力驱使流体流出腔体或被认为是流体的排出力。把输入的机械力Fn转换为输出的液压力Pn,是该柱塞泵的工作的基础。液压力容积流量说明瞬时流线从第n个腔流出混入泵的排油腔。用Q0表示泵的众多容积流量网合成系统的排油。每个柱塞腔的压力是各不相同的,但是泵排油区一条流线上的压力是一个常数Pd。液压系统排油区的压力为P0。在以下的分析中,我们来考虑一个流体单元。这个单元是封闭的从而可以代表第n个柱塞腔到系统排油区的流线。液压力(Pn Po)An作用于此单元,这里Pn是第n个柱塞腔的压力,Po 是系统排油腔的压力,An是代表着从第n个柱塞腔流出的流线的流体单元的瞬时横截面。Kidney-Shaped Flow Passage from a Single Piston ChamberFig. 5 Trapped-volume valve plate design图5是修饰后的配流盘的图解,它省去了最顶点和最底点的卸荷槽。(intake port:吸入口discharge port:排出口 kidney-shaped flow passage from a single piston chamber:从单个柱塞腔引出来的贤脏形状的流道)和图4同理,图5同样给出了从单个柱塞腔引出来的肾脏形状的流道配合着配流盘上的弓形门状几何体。当流道向θn=π/2位置移动是,事实上流道逐渐被此区域内的门状几何体所阻断。当柱塞腔正好位于顶死点时,柱塞腔是关闭的没有流体的流进和流出。如图5所示,当柱塞向配流盘吸油区移动时这种封闭的情况依然存在。在这种封闭的状况下,柱塞腔内的流体被困住,所以叫做被困容积泵的设计。封闭区域的角度尺寸用ζ1表示。在这种设计中,压力的转变并不是靠配流盘上的卸荷槽来实现的,而是单独靠受控体积在柱塞腔内的体积膨胀来完成的。穿过封闭区时,柱塞腔立刻与吸油区联通,流体从泵的吸油区流入柱塞腔。当θn=3π/2柱塞腔靠近最底线时,也会有同样的状况。在此区域内柱塞从吸油区移动到排油区,其封闭的角度尺寸用ξb表示。在这个位置,压力的转变由柱塞腔内受控体积的压缩来完(图 6 piston pressures:活塞压强equation:方程式angular position:有角的位置)Fig. 7 Piston discharge flows(piston discharge flows:活塞流体流动)图5也在事实上考虑了柱塞泵中单一个柱塞腔的四个不同的区域的压力和流动分总结图6用这种泵的设计理论作为知道思想,把压力方程(27)和压力方程(36)做了比较。同样的道理,把流体流动方程(28)和(37)做对比,我们还能得到图7。如图6所示,被困体积泵的设计中压力转变相对于标准柱塞泵的设计中的压力转变而言,有很大程度的滞后。从图7可以看出,在配流盘压力转变区域内,标准柱塞泵设计中的容积流动受到了很大的阻力。这种流体流动的阻力是由于在柱塞腔的最低点和最顶点流体受到了不受控制的膨胀和压缩而造成的。在最低点附近的不受控制的压缩对柱塞泵产生了很不利的功率损失。讨论因为以前的结果都是随时间变化的,为了出个方法解决这个问题,我们必须为每次压力转变的操作而设计一种新的配流盘的设计理念。图8显示了随着压力操纵的改变,柱塞泵配流盘的设计也跟着改变,同时附表给出了基本柱塞泵参数的变化。方程(40)和方程(43)分别描述了普通柱塞泵设计和被困体积柱塞泵设计的功率损失。用附录中的参数,我们把这些方程描述在了图9中。就如图9所示,相对于(图8改变门状儿何面积作为压力转变的操作)被困体积泵设计的功率损失而言,普通泵设计的功率损失要大。这种结果可以用配流盘上的插

文档评论(0)

dajuhyy + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档