- 1、本文档共26页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
变频器的工作原理及功能初步简介
IGBT简介 IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。 IGCT简介 IGCT集成门极换流晶闸管(Intergrated Gate Commutated Thyristors)是一种中压变频器开发的用于巨型电力电子成套装置中的新型电力半导体开关器件(集成门极换流晶闸管=门极换流晶闸管+门极单元)。1997年由ABB公司提出。IGCT使变流装置在功率、可靠性、开关速度、效率、成本、重量和体积等方面都取得了巨大进展,给电力电子成套装置带来了新的飞跃。IGCT是将GTO芯片与反并联二极管和门极驱动电路集成在一起,再与其门极驱动器在外围以低电感方式连接,结合了晶体管的稳定关断能力和晶闸管低通态损耗的优点,在导通阶段发挥晶闸管的性能,关断阶段呈现晶体管的特性。IGCT具有电流大、阻断电压高、开关频率高、可靠性高、结构紧凑、低导通损耗等特点,而且成本低,成品率高,有很好的应用前景。 已用于电力系统电网装置(100MVA)和的中功率工业驱动装置(5MW)IGCT在中压变频器领域内成功的应用了11年的时间(到09年为止),由于IGCT的高速开关能力无需缓冲电路,因而所需的功率元件数目更少,运行的可靠性大大增高。 IGCT集IGBT(绝缘门极双极性晶体管)的高速开关特性和GTO(门极关断晶闸管)的高阻断电压和低导通损耗特性于一体,一般触发信号通过光纤传输到IGCT单元。在ACS6000的有缘整流单元的相模块里,每相模块由IGCT和续流二极管、钳位电容、阻尼电阻组成,由独立的门极供电单元GUSP为其提供能源。 BJT简介 BJT指的就是双极型二极管,它是一个“两结三端”电流控制器件。从所用半导体材料上看,有硅(Si)和锗(Ge管之分);从原理结构上看,可分为NPN和PNP两种类型。 BJT的基本功能有两个:电流放大作用和流控开关作用。 GTR简介 电力晶体管是一种双极型大功率高反压晶体管,由于其功率非常大,所以,它又被称作为巨型晶体管,简称GTR。GTR是由三层半导体材料两个PN结组成的,三层半导体材料的结构形式可以是PNP,也可以是NPN。大多数?双极型功率晶体管是在重掺质的N+硅衬底上,用外延生长法在N+上生长一层N漂移层,然后在漂移层上扩散P基区,接着扩散N+发射区,因之称为三重扩散。基极与发射极在一个平面上做成叉指型以减少电流集中和提高器件电流处理能力。?GTR分为NPN型和PNP型两类,又有单管GTR、?达林顿式GTR(复合管)和GTR模块几种形式。?单管GTR饱和压降VCES低,开关速度稍快,但是电流增益β小,电流容量小,驱动功率大,用于较小容量的逆变电路。?达林顿式GTR电流增益β值大,电流容量大,驱动功耗小,但饱和压降VCES较高,关断速度较慢。和单管GTR一样,达林顿式非模块化的GTR在现代逆变电路中早已不太常用。应用比较广泛的还是GTR模块。它是将两只或4只、6只、甚至7只单管GTR或达林顿式GTR的管芯封装在一个管壳内,分别组成单桥臂、单相桥、三相桥和带泄放管的三相桥形式,外壳绝缘,便于设计和安装。?在逆变电路中,GTR都工作在共发射极状态,其输出特性曲线是指集电极电流IC和电压VCE以及基极电流IB之间的关系。 GTR特性及应用 GTR的特性曲线分5个区。I区为截止区,IB=0,IC很小,为CE漏电流。II区为线性放大区,当IB增加时,IC也跟随IB线性增加。随着VCE继续降低,IC已没有增长能力,这就进入了深度饱和区,即第IV区。这时的VCE称为GTR的饱和压降,用VCES表示,它比GTO和VMOSFET要低。V区为击穿区。当VCE增加到一定值时,即使IB不增加,IC也会增加,这时的VCE就是GTR的一次击穿电压。如果VCE继续增加,IC也增加,由于GTR具有负阻特性,当结温上升时,IC更大。由于整个管芯的导电不可能绝对均匀,大的IC会产生集中热点,从而发生雪崩击穿,IC骤增。这时候,即使降低VCE也无济于事,高速增长的热量无法散出,在很短时间内(几微秒甚至几纳秒)便使GTR被永远地烧坏。这就是GTR的二次击穿现象,它是GTR最致命的弱点,也是限制GTR发展和进一步推广应用的最重要的原因之一。电力晶体管GTR大多作
文档评论(0)