图文并茂的 CNN 介绍 PPT.ppt

  1. 1、本文档共47页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
图文并茂的 CNN 介绍 PPT

Layer 3?4: Convolution Neural Network CNN ver. 4.11a * Layer 3?4: 12 conv. Maps (C) InputMaps=6 OutputMaps=12 Fan_in= 6x52=150 Fan_out= 12x52=300 Kernel =5x5 Layer 4(c): 12x8x8 Layer3 L3(s): 6x12x12 Conv. layer 3 with kernels to produce layer 4 Inputs : 6 maps of layer3(L3{i=1:6}), each is 12x12 Kernel set: totally 6x12 kernels, each is 5x5,i.e. K{i=1:6}{j=1:12}, each K{i}{j} is 5x5 12 bias{j=1:12} in this layer, each is a scalar Output : 12 maps of layer4(L4{j=1:12}), each is 8x8 Algorithm for(j=1:12) {for (i=1:6) {clear z, i.e. z=0; z=z+covn (L3{i}, k{i}{j},’valid’)] %z is 8x8 } L4{j}=sigm(z+bais{j}) %L4{j} is 8x8 } function X = sigm(P) X = 1./(1+exp(-P)); End Discussion Normalization? Index=i=1:6 Index=j=1:12 : net.layers{l}.a{j} Layer 4?5 Convolution Neural Network CNN ver. 4.11a * Layer 4?5: 12 sub-sample Map (S) InputMaps=12 OutputMaps=12 Layer 5: 12x4x4 10 Subs Layer 4: 12x8x8 2x2 Subsample layer 4 to layer 5 Inputs : 12 maps of layer4(L4{i=1:12}), each is 12x8x8 Output : 12 maps of layer5(L5{j=1:12}), each is 4x4 Algorithm Sub sample each 2x2 pixel window in L4 to a pixel in L5 Discussion Normalization? Layer 5?output Convolution Neural Network CNN ver. 4.11a * Each output neuron corresponds to a character (0,1,2,..,9 etc.) net.o{m=1:10} Layer 4?5: 12 sub-sample Map (S) InputMaps=12 OutputMaps=12 Layer 5 (L5{j=1:12}: 12x4x4=192 Totally 192 pixels 10 Subsample layer 4 to layer 5 Inputs : 12 maps of layer5(L5{i=1:12}), each is 4x4, so L5 has 192 pixels in total Output layer weights: Net.ffW{m=1:10}{p=1:192}, total number of weights is 192 Output : 10 output neurons (net.o{m=1:10}) Algorithm For m=1:10%each output neuron {clear net.fv net.fv=Net.ffW{m}{all 192 weight}.*L5(all corresponding 192 pixels) net.o{m}=sign(net.fv + bias) } Discussion : : Totally 192 weights for each output neuron Same for each output neuron Part 2B Back propagation part cnnbp( ) cnnapplyweight( ) Convolution Neural Network CNN ver. 4.11a

文档评论(0)

dajuhyy + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档