大规模数据处理与云计算-图与路由算法.ppt

大规模数据处理与云计算-图与路由算法.ppt

  1. 1、本文档共46页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
大规模数据处理与云计算-图与路由算法

* Stopping Criterion How many iterations are needed in parallel BFS (positive edge weight case)? Practicalities of implementation in MapReduce * Graphs and MapReduce Graph algorithms typically involve: Performing computations at each node: based on node features, edge features, and local link structure Propagating computations: “traversing” the graph Generic recipe: Represent graphs as adjacency lists Perform local computations in mapper Pass along partial results via outlinks, keyed by destination node Perform aggregation in reducer on inlinks to a node Iterate until convergence: controlled by external “driver” Don’t forget to pass the graph structure between iterations * Random Walks Over the Web Random surfer model: User starts at a random Web page User randomly clicks on links, surfing from page to page PageRank Characterizes the amount of time spent on any given page Mathematically, a probability distribution over pages PageRank captures notions of page importance Correspondence to human intuition? One of thousands of features used in web search Note: query-independent * Given page x with inlinks t1…tn, where C(t) is the out-degree of t ? is probability of random jump N is the total number of nodes in the graph PageRank: Defined X t1 t2 tn … * Computing PageRank Properties of PageRank Can be computed iteratively Effects at each iteration are local Sketch of algorithm: Start with seed PRi values Each page distributes PRi “credit” to all pages it links to Each target page adds up “credit” from multiple in-bound links to compute PRi+1 Iterate until values converge * Simplified PageRank First, tackle the simple case: No random jump factor No dangling links Then, factor in these complexities… Why do we need the random jump? Where do dangling links come from? * Sample PageRank Iteration (1) n1 (0.2) n4 (0.2) n3 (0.2) n5 (0.2) n2 (0.2) 0.1 0.1 0.2 0.2 0.1 0.1 0.066 0.066 0.066 n1 (0.066) n4 (0.3) n3 (0.166) n5 (0.3) n2 (0.166) Iteration 1 * Sample PageRank Itera

文档评论(0)

dajuhyy + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档