- 1、本文档共28页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
支持向量机 support vector machine,SVM Outline SVM的理论基础 线性判别函数和判别面 最优分类面 支持向量机 SVM的理论基础 传统的统计模式识别方法只有在样本趋向无穷大时,其性能才有理论的保证。统计学习理论(STL)研究有限样本情况下的机器学习问题。SVM的理论基础就是统计学习理论。 传统的统计模式识别方法在进行机器学习时,强调经验风险最小化。而单纯的经验风险最小化会产生“过学习问题”,其推广能力较差。 推广能力是指: 将学习机器(即预测函数,或称学习函数、学习模型)对未来输出进行正确预测的能力。 过学习问题 “过学习问题”:某些情况下,当训练误差过小反而会导致推广能力的下降。 例如:对一组训练样本(x,y),x分布在实数范围内,y取值在[0,1]之间。无论这些样本是由什么模型产生的,我们总可以用y=sin(w*x)去拟合,使得训练误差为0. SVM 由于SVM 的求解最后转化成二次规划问题的求解,因此SVM 的解是全局唯一的最优解 SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中 Joachims 最近采用SVM在Reuters-21578来进行文本分类,并声称它比当前发表的其他方法都好 Outline SVM的理论基础 线性判别函数和判别面 最优分类面 支持向量机 线性判别函数和判别面 一个线性判别函数(discriminant function)是指由x的各个分量的线性组合而成的函数 两类情况:对于两类问题的决策规则为 如果g(x)0,则判定x属于C1, 如果g(x)0,则判定x属于C2, 如果g(x)=0,则可以将x任意 分到某一类或者拒绝判定。 线性判别函数 下图表示一个简单的线性分类器,具有d个输入的单元,每个对应一个输入向量在各维上的分量值。该图类似于一个神经元。 超平面 方程g(x)=0定义了一个判定面,它把归类于C1的点与归类于C2的点分开来。 当g(x)是线性函数时,这个平面被称为“超平面”(hyperplane)。 当x1和x2都在判定面上时, 这表明w和超平面上任意向量正交, 并称w为超平面的法向量。 注意到:x1-x2表示 超平面上的一个向量 判别函数g(x)是特征空间中某点x到超平面的距离的一种代数度量 ?从下图容易看出 上式也可以表示为: r= g(x)/||w||。当x=0时,表示原点到超平面的距离,r0= g(0)/||w||=w0/||w||,标示在上图中。 多类的情况 利用线性判别函数设计多类分类器有多种方法。例如 可以把k类问题转化为k个两类问题,其中第i 个问题是用线性判别函数把属于Ci类与不属于Ci类的点分开。 更复杂一点的方法是用k(k-1)/2个线性判别函数,把样本分为k个类别,每个线性判别函数只对其中的两个类别分类。 广义线性判别函数 在一维空间中,没有任何一个线性函数能解决下述划分问题(黑红各代表一类数据),可见线性判别函数有一定的局限性。 广义线性判别函数 如果建立一个二次判别函数g(x)=(x-a)(x-b),则可以很好的解决上述分类问题。 决策规则仍是:如果g(x)0,则判定x属于C1,如果g(x)0,则判定x属于C2,如果g(x)=0,则可以将x任意分到某一类或者拒绝判定。 广义线性判别函数 广义线性判别函数 设计线性分类器 Outline SVM的理论基础 线性判别函数和判别面 最优分类面 支持向量机 最优分类面 SVM 是从线性可分情况下的最优分类面发展而来的, 基本思想可用图2的两维情况说明. 最优分类面 如何求最优分类面 最优分类面 Outline SVM的理论基础 线性判别函数和判别面 最优分类面 支持向量机 支持向量机 上节所得到的最优分类函数为: 该式只包含待分类样本与训练样本中的支持向量的内积 运算,可见,要解决一个特征空间中的最优线性分类问题,我们只需要知道这个空间中的内积运算即可。 ?对非线性问题, 可以通过非线性变换转化为某个高维空间中的线性问题, 在变换空间求最优分类面. 这种变换可能比较复杂, 因此这种思路在一般情况下不易实现. 支持向量机 核函数的选择 SVM方法的特点 ①?非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射; ②?对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心; ③?支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。 ?SVM 是一种有坚实理论基础的新颖的小样本学习方法。它基本上不涉及概率测度及大数定律等,因此不同于现有的统计方法。从本
您可能关注的文档
- 数学史概论近代数学的兴起.ppt
- 数学史是研究数学发展规律的科学.ppt
- 数学史部分古埃及的数学.ppt
- 数学向量学习资料.ppt
- 数学和科学教学中的互动课程.ppt
- 数学史课件:第二章中国数学历史发展概况.ppt
- 数学复习解题指导:第20讲等腰三角形.ppt
- 数学复习解题指导:第29讲直线与圆的位置关系.ppt
- 数学好玩第九单元教材分析.ppt
- 数学史的起源和早期发展.ppt
- 2024年学校党总支巡察整改专题民主生活会个人对照检查材料3.docx
- 2025年民主生活会个人对照检查发言材料(四个带头).docx
- 县委常委班子2025年专题生活会带头严守政治纪律和政治规矩,维护党的团结统一等“四个带头方面”对照检查材料四个带头:.docx
- 巡察整改专题民主生活会个人对照检查材料5.docx
- 2024年度围绕带头增强党性、严守纪律、砥砺作风方面等“四个方面”自我对照(问题、措施)7.docx
- 2025年度民主生活会领导班子对照检查材料(“四个带头”).docx
- 国企党委书记2025年度民主生活会个人对照检查材料(五个带头).docx
- 带头严守政治纪律和政治规矩,维护党的团结统一等(四个方面)存在的问题整改发言提纲.docx
- 党委书记党组书记2025年带头增强党性、严守纪律、砥砺作风方面等“四个带头”个人对照检查发言材料.docx
- 2025年巡视巡察专题民主生活会对照检查材料.docx
文档评论(0)