类不均衡的半监督高斯过程分类算法_夏战国.pdf

类不均衡的半监督高斯过程分类算法_夏战国.pdf

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
类不均衡的半监督高斯过程分类算法_夏战国

34 5 Vol.34 No. 5 2013 5 Journal on Communications May 2013 doi:10.3969/j.issn.1000-436x.2013.05.005 221116 TP181 A 1000-436X(2013)05-0042-10 Semi-supervised Gaussian process classification algorithm addressing the class imbalance XIA Zhan-guo, XIA Shi-xiong, CAI Shi-yu, WAN Ling (School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China) Abstract: The traditional supervised learning is difficult to deal with real-world datasets with less labeled information when the training sets class is imbalanced. Therefore, a new semi-supervised Gaussian process classification of address- ing was proposed. The semi-supervised Gaussian process was realized by calculating the posterior probability to obtain more accurate and credible labeled data, and embarking from self-training semi-supervised methods to add class label into the unlabeled data. The algorithm makes the distribution of training samples relatively balance, so the classifier can adaptively optimized to obtain better effect of classification. According to the experimental results, when the circum- stances of training set are class imbalance and much lack of label information, The algorithm improves the accuracy by obtaining effective labeled in comparison with other related works and provides a new idea for addressing the class im- balance is demonstrated. Key words: class

文档评论(0)

allap + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档