网站大量收购闲置独家精品文档,联系QQ:2885784924

第八章 自相关2016.ppt

  1. 1、本文档共25页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第八章 自相关2016

Chapter 7 Heteroscedasticity This assumption is relaxed: The disturbances ui appearing in the population regression function are homoscedastic ,or they all have same variance. var(ui)=?2i=?2=constant,i=1,2,…,n heteroscedastic:the variances of disturbance vary with X, or is a function of X var(ui)= ?2 i=f(Xi) 7.1 the heteroscedasticity in real life 1、error-learning models As people learn, errors they make become smaller over time, variance of errors decrease too. 2、savings function As incomes grow ,people have more choices about their saving behavior. 3、cross-section data Cobb—Douglas product function Y=ALαKβeu AS the size become larger, the company has more choice about product techinique and management mode, the difference of product amount become larger. 7.2 the source and consequence of heteroscedasticity 1、the source of heteroscedasticity because the disturbance stands for other factors ignored by the regression model,the heteroscedasticity may result from these factors ignored. a.Specification error: some important variables are omitted from the model. the disturbance includes the influence of the important variable ignored and these variable may be related to some regressors b.Skewness in the distribution of one or more regressors included in the model. c.Measurement error and the improvement of data collecting techniques d. Presence of outlier: Outlier: an observation is much different(very small or very large) comparing with other observation. f. Cross-section data: In cross-section data, one may deal with objects with different order of magnitude 2、the consequence of heteroscedasticity a. the OLS estimator of coefficient is still linear and unbiased, but not the best,or haven’t the minimum variances。 because ?2 I vary with Xi, the variance of estimator can’t be obtained. b.It is difficult to proceed t test and establish the confidence interval of coefficient。 c. Is not unb

文档评论(0)

dajuhyy + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档