网站大量收购独家精品文档,联系QQ:2885784924

一种精确测量5G蜂窝网络的新方法 来源: 互联网 有源天线系统(AAS .DOC

一种精确测量5G蜂窝网络的新方法 来源: 互联网 有源天线系统(AAS .DOC

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
一种精确测量5G蜂窝网络的新方法 来源: 互联网 有源天线系统(AAS

一种精确测量5G蜂窝网络的新方法 来源: 有源天线系统(AAS)作为即将到来的5G蜂窝网络的组成部分,越来越受关注。这些网络具有灵活的辐射模式,能够自适应不同的环境。为了获得三维空间中有源天线系统(AAS)的所有特性,需要一种新的有源天线测量方法。本文采用一种全新方法来快速准确获取有源天线系统的特性。 天线特性 随着5G时代来临,多输入多输出(MIMO)天线阵列或“大规模MIMO”,在用户和网段发展中都起着举足轻重的作用。“大规模”的定义可以从数组元素相对较少的有源天线阵列系统到涉及数百个天线的设计案例。两者的共同点是分布放大,波束控制和密集天线的全集成。为了准确描述有源天线系统(ASS),其总体性能必须在一个经过校准的空中下载(OTA)装置中确定,因为空中下载(OTA)装置可以测量空间定向功率和灵敏度曲线。因此,有源天线的性能参数测试与现有微型移动设备的测试是非常相似的。 有源天线系统的性能参数 有源天线系统的性能参数主要是在远场(FF)条件下的定向功率与灵敏度[1],它们包含: ??????有效全向辐射功率— EIRP(θ,Φ)??????总辐射功率— TRP??????有效全向灵敏度— EIS(θ, φ)??????总全向灵敏度(TIS)或者总辐射灵敏度(TRS)??????天线方向增益— G(θ, φ) 对于一个给定方向的天线,通过使用校准过的OTA测量装置,有效全向辐射功率(EIPR)和有效全向灵敏度(EIS)的定向性能参数都是可以测量的。定向有效全向辐射功率(EIPR)是天线增益加权的辐射功率。总辐射功率(TRP)是由有效全向辐射功率(EIPR)的全向集成和与天线相关的全向增益决定的。同样地,定向有效全向灵敏度(EIS)是由天线的全向增益加权的总全向灵敏度(TIS)或总辐射灵敏度(TRS)决定的。总全向灵敏度(TIS)或总辐射灵敏度(TRS)是由集成定向有效全向灵敏度(EIS)和天线全向增益决定的。 远场测量条件 一个普遍接受的标准,定义了天线的远场(FF)的距离是2D2/λ,其中D是天线的直径,λ是自由空间的波长[2]。电小天线,如移动通信设备和测量天线,在远场(FF)情况下,一般满足并方便短距离测量。 然而,对于中等大小,或更大的AAS天线系统,远场(FF)的测量对测量距离的要求是不切实际的。图1说明2 GHz的8元阵列天线在不同近场(NF)距离的天线仰角方向图,以及需要的远场(FF)距离。可以观察到,天线仰角方向图在可用的测量距离下是没有完全形成的。 图表1:2 GHz的8元阵列天线在不同的近场(NF)和远场(FF)距离测得天线仰角方向图。 一个给定天线的远场(FF)方向图可以使用紧缩平面场(CATR) [1,2]直接测量,或者使用标准近场(NF)测试技术[3]的近远场变换来决定。近场(NF)测量通常是在三维性能条件下优先考虑,因为他们只需很小的物理测量装置,并且一般认为近场测量更快,更准确。 然而,由于功率守恒,使用校准过的OTA装置,AAS的性能参数可以在任何距离决定。远场(NF)到近场(FF)对天线增益的差异可以由近远场转换技术[3]确定和补充。 相位补偿无源测量方案 由于AAS天线是一种没有固定相位参考的有源器件,所以在远场(FF)情况下的测量可以使用远场(FF)的设置,如紧缩平面场(CATR)或近场(NF)范围。使用相位补偿技术允许近场(NF)到远场(FF)的变换。 一种常见的相位补偿方法是全息技术,在未知测量信号与稳定参考信号之间采用不同组合。这是基于同时接收参考和测量信号首选的方法。为了准确测量调制信号的相位,相位补偿单元(PRU)的设计包含了所有必要的放大、滤波和信号组合模块。 相位补偿单元(PRU)的验证 为了模拟真实的AAS天线,使用连接到8阵元无源阵列的带LTE协议的移动手机,作为外部天线(见图1)。图2显示使用相位补偿技术,测量幅度与共极近场(NF)相位之间的比较。这也可以与同一天线的无源测量相比较。可以看出,测量幅度和相位的相互联系是非常紧密的。 利用相位补偿单元,设置BTS天线的中心频率为1940MHz带宽为10MHz,使用LTE调制的相位补偿测量。由相位补偿技术引入的误差相当于一个-45 dB水平的噪音。 图表2:共极,8元阵列天线近场测试。使用相位补偿单元,参考测量(左)和有源测量(右)LTE协议。幅度(顶部),相位(底部)。 验证天线的有效全向灵敏度(EIS) (θ, φ),有效全向辐射功率(EIPR) (θ, Φ)测量 为了验证近场(NF)测量方法,需要使用有效全向灵敏度(EIS) (θ, φ)和有效全向辐射功率(EIPR) (θ, Φ)的验证设备。由于在这个例子中8阵元天线和LTE是可分的,所以有效全向灵敏度(EIS) (θ, φ)和有效全向辐射功率(EIPR) (θ,

文档评论(0)

youbika + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档