- 1、本文档共5页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
听障大学生教学评价数据的统计分析研究.doc
听障大学生教学评价数据的统计分析研究
摘要:本文通过SPSS软件,对听障大学生教学评价数据进行多种方法的统计分析,将教学评价指标、参与课程等进行分类,同时比较不同学科类别、不同职称授课教师的教学评价结果进行分析,以便对教学评价数据更好的利用,对听障大学生课堂教?W管理提供更加有意义的信息。
关键词:听障大学生; 教学评价; 统计分析
【中图分类号】G762
学生教学评价,即学生作为评价主体对教师的教学质量进行评价。其主要目的是为教师的教学提供有用的反馈,以促进教师提高教学质量,从而为提高学生的学习效果服务 [1、2]。听障大学生,作为特殊的学生群体,日常教学应赋予更多的关心和爱心。对听障大学生教学评价数据的研究,可以促进从事特殊教育的老师改善教学方法,调整教学态度,进一步提高特殊高等教育的课堂教学质量显得格外重要。
数据数理统计分析是数学的一个分支,是指研究如何有效地收集和使用带有随机性影响的数据。通过数据的数理统计分析,可以进行数据的整理和问题的推断[3]。现代数理统计分析的一个显著特点就是运用计算机实现有关的统计计算与分析,目前也有许多应用计算机软件对于教学质量进行分析讨论的报道。本文利用SPSS软件(Statistical Product and Service Solutions)对听障大学生教学评价数据进行统计分析,以更好的发挥评价的诊断、激励和导向的作用。
一、数据分析来源
本文数据来源于某大学某学期听障大学生教学评价数据,共涉及25门课程。教学评价分为十项指标,分别为“tm1”:仪表端庄,教态自然,精神饱满;“tm2”:上课准时、足时,认真负责,严格要求学生;“tm3”:关怀和尊重学生,有固定的辅导和答疑时间师生关系融洽;“tm4”:教学目标、要求、考核形式明确,推荐有助我们学习的参考文献;“tm5”:授课内容充实,信息量大,重难点突出,进度安排适当;“tm6”:作业有利于我们掌握知识和自主学习,批改和分析认真;“tm7”:思路清晰,阐述准确,语言规范生动;“tm8”:因材施教,注重学生创新意识和能力培养;“tm9”:教学方法灵活,教学手段恰当,注重互动,课堂气氛活跃;“tm10”:掌握了本课程的核心内容,激发了学生学习兴趣,提高了分析问题、解决问题的能力。
二、分析方法
本文主要使用了SPSS软件中的描述性统计分析(Descriptive Statistics,得到原始数据转化成标准化的取值,可以直观了解数据的情况,同时便于进一步分析);K-S单样本检验分析(Kolomogorov- Simirnov One-sample Test,主要考察数据是否符合正态分布);主成分分析(Principal Component Analysis,将多个变量通过线性变换以选出较少个数重要变量);K中心聚类分析(K-means cluster analysis,将数据进行分类,辨别样本之间的亲疏关系);单因素方差分析(one-way ANOVA,调查按某个研究因素的不同水平分组后该因素的效应)。
三、结果与分析
(一)学生教学评价整体情况及正态分布分析
分析教学评价整体情况可以了解听障大学生课堂教学质量的总体情况。从表1可以看出,该学期听障大学生教学评价总分范围在81.48-99.82之间,平均成绩为89.69±3.62。利用SPSS软件进行正态分布分析,得到表2及图1。从表2得到单样本K-S检验Z统计值为0.500,渐近显著性水平为0.964,远大于0.05,因此教学评价结果符合正态分布。
(二)学生教学评价指标主成份分析
利用SPSS进行学生教学评价指标主成份分析后,得到表3。主成份分析法只提取到1个成分,且变量系数均接近1,因此可以认定本体系10项指标相互独立,影响较小。
(三)不同课程学生教学评价聚类分析
通过SPSS软件K中心聚类分析方法,将25门课程进行聚类分析,得到表4、表5。从表4可以看出,通过聚类分析,通过学生教学评价成绩将25门课程分为了2类,1类优秀成绩为15门课程,2类良好成绩为10门课程。表5则表示每门课程所属聚类。
(四)学生教学评价指标的聚类分析
通过SPSS软件K中心聚类分析方法,将学生教学评价十项指表每门课程的得分进行聚类分析,得到表6、表7。通过聚类分析,将评价指标分为了2类,指标1、2、3被归为类别1,可以看出主要是指教师的教学态度;指标4-10被归为类别2,主要考查教师的教学业务水平。
(五)不同学科类别科目学生教学评价差异性分析
根据课程不同性质,将参与评价的25门课程分为了学生思政(两课)类、文科(外语、语言等)类、理科(数学、物理等)类。
利用SPSS进行单
文档评论(0)