- 1、本文档共8页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
混合效应模型在道面状态转移概率估计中的应用分析 刘玉海 凌建明 杜
混合效应模型在道面状态转移概率估计中的应用分析
刘玉海 凌建明 杜 浩
(同济大学道路与交通工程教育部重点实验室 上海 201804)
摘要:为研究混合效应Logistic模型确定马尔可夫状态转移概率矩阵的方法及效果,以道面结构厚度、道面使用时间、状态等级和交通量等因素变量为固定效应,以截距为随机效应建立混合效应Logistic模型。采用多个机场积累的道面实测PCI值为数据源,估计模型参数并作实例分析。结果表明:(1)应用混合效应Logistic模型可分析多因素对道面使用性能的影响,获得非齐次状态转移概率矩阵,实现道面使用性能马尔可夫动态预测,显著改善概率预测的精度;(2)混合效应Logistic模型中随机效应能够反映道面数据内不可观测的异质性,降低模型残差的相关性,提高固定效应参数估计的可靠性;(3)通过对混合效应Logistic模型随机效应参数的估计,可得到数据源内任意个体道面的状态转移概率矩阵,克服传统方法多次建模及数据不足的困难,从而实现对特定道面的性能预测。
关键词:马尔可夫过程;道面使用性能;混合效应;预测;转移概率矩阵
中图分类号:U416.V235 文献标识码:A 文章编号:
Application of Linear Mixed Effects Model to Estimating Pavement Condition Markov Transition Probabilities
LIU Yuhai, LING Jianming, DU Hao
(1 Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University,shanghai,201804,China)
Abstract: In order to study the approach and effectiveness of using mixed effects logistic model to estimate transition probability matrices for pavement deterioration modeling, a mixed logistic model is used to establish a dynamic relationship between pavement transition probabilities and explanatory variables such as pavement age, thickness, traffic level and random intercepts. A case study focused on applying the model with real data is conducted. The comparison results show that:(1) The impact of pavement types, environmental factors, traffic loading, and other relevant factors can directly considered and a non-homogeneous transition probability matrix, which varies with time and yield better predictions, is derived by using mixed logistic model. (2) Unobserved heterogeneity which comes from measurement errors and unobserved factors across different individual pavement sections is captured by random effects, and then bias and inconsistency of estimates are reduced to an acceptable small level. (3) Different individual pavement transition probability ,which can be used to predict a given pavement performance, is obtained by estimating random effects parameters in the mixed logistic model, especia
文档评论(0)