SPSS中异常值检验的几种方法介绍.docVIP

  1. 1、本文档共34页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
SPSS中异常值检验的几种方法介绍 方法具体如下所示: 离群值(箱图/探索).值与框的上下边界的距离在1.5倍框的长度到3倍框的长度之间的个案。框的长度是内距。 极端值(箱图).值距离框的上下边界超过3倍框的长度的个案。框的长度是内距 在回归模型诊断里面,一般称预测值与实际值的偏差为残差,残差有几种表示方法:标准化残差, 学生化残差等等,按照需要取一种残差,再按照某种标准取一个阀值来限定异常点,只要那个点的残差大于阀值,就可以认为它是异常点。 SPSS14之后新功能? SPSS Data Validation能帮助您轻松地探察多个异常值,以便您可以进一步检验并确定是否把这些观测包括在您的分析中。SPSS Data Validation异常探察程序能够基于与数据集中相似观测的偏离探察异常值,并给出偏离的原因。它使您可以通过创建新变量来标识异常值。 标签: 市场研究? 研究方法? 经营分析? 分类: 经营分析 2009-11-24 18:59 ??? 这段时间太忙了,一直没有静下心来。积攒了几个朋友的问题,现在来回答或介绍一些,今天先谈谈时间序列(Time-Series Forecasting)的预测问题! 预测:是对尚未发生或目前还不明确的事物进行预先的估计和推测,是在现时对事物将要发生的结果进行探讨和研究,简单地说就是指从已知事件测定未知事件。 为什么要预测呢,因为预测可以帮助了解事物发展的未来状况后,人们可以在目前为它的到来做好准备,通过预测可以了解目前的决策所可能带来的后果,并通过对后果的分析来确定目前的决策,力争使目前的决策获得最佳的未来结果。 我们进行预测的总的原则是:认识事物的发展变化规律,利用规律的必然性,是进行科学预测所应遵循的总的原则。 这个总原则实际上就是事物发展的 1-“惯性”原则——事物变化发展的延续性; 2-“类推”原则——事物发展的类似性; 3-“相关”原则——事物的变化发展是相互联系的; 4-“概率”原则——事物发展的推断预测结果能以较大概率出现,则结果成立、可用; 时间序列预测主要包括三种基本方法: 1-内生时间序列预测技术;2-外生时间序列预测技术;3-主观时间序列预测技术; 当然今天我们主要讨论内生时间序列预测技术——也就是只关注时间序列的下的预测问题! 从数据分析的角度来考虑,我们需要研究: 序列是否在固定水平上下变动? 此水平是否也在变动? 是否有某种上升或下降的趋势呢? 是否存在有季节性的模式? 是否季节性的模式也在变更呢? 是否存在周期性规律和模式? 时间序列有一明显的特性就是记忆性(memory),记忆性系指时间数列中的任一观测值的表现皆受到过去观测值影响。 时间序列主要考虑的因素是: 长期趋势(Long-term trend)? 时间序列可能相当稳定或随时间呈现某种趋势。 时间序列趋势一般为线性的(linear),二次方程式的 (quadratic)或指数函数(exponential function)。 季节性变动(Seasonal variation) 按时间变动,呈现重复性行为的序列。 季节性变动通常和日期或气候有关。 季节性变动通常和年周期有关。 周期性变动(Cyclical variation) 相对于季节性变动,时间序列可能经历“周期性变动”。 周期性变动通常是因为经济变动。 随机影响(Random effects) 预测技术主要包括两大类: 指数平滑方法(Exponential smoothing models): ??? 描述时间序列数据的变化规律和行为,不去试图解释和理解这种变化的原因。例如:您可能发现在过去的一年里,三月和九月都会出现销售的高峰,您可能希望继续保持这样,尽管您不知道为什么。 ARIMA模型: ??? 描述时间序列数据的变化规律和行为,它允许模型中包含趋势变动、季节变动、循环变动和随机波动等综合因素影响。具有较高的预测精度,可以把握过去数据变动模式,有助于解释预测变动规律,回答为什么这样 标签: 市场研究? 研究方法? 经营分析? 分类: 经营分析 2009-12-02 15:35 ??? 本想早点完成这个时间序列的主题,但最近一直非常多的事情,又耽搁了这么长时间。朋友们问的问题没有收尾总是不好,抓紧时间完成吧。 ??? 因为,后天要参加中国电信集团的一个EDA论坛,要仔细准备发言稿!在交流的过程中,发现大家都对预测问题非常关注,尤其是数据挖掘领域,有时候分类问题与预测问题在表达上区分不开,有时候分类就是预测,比如通过判别分析、C5.0规则或Logistics回归进行监督类建模,得到的结论说该客户是什么类别等级,似乎也可以说是预测;当然,如果能够预测该消费者什么时候流失,也就是进行了分类;这样说吧,其实有时候并不需要严格

文档评论(0)

qhhb493 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档