- 1、本文档共11页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
荧光辐射机制
1光致电子转移(PET)
递给荧光基团的键合基团(RecePtor),负责光吸收并产生荧光发射信号的荧光基团(Fluorophorc)—其荧光发射强度反映键合基团的结合状态,以及连接键合集团和荧光基团的连接基团(Spacer)。键合基团和荧光基团通常为电子给体或者电子受体。
光致电子转移是指电子给体或电子受体受光激发后,激发态的电子给体与电子受体之间发生电子转移从而导致荧光的淬灭过程。例如,当荧光分子传感器的键合基团是电子给体,荧光基团是电子受体时,具体PET作过程如下:在光激发下,具有电子给予能力的键合基团能够将其处于最高能级的电子转入激发态下荧光基团空出的电子轨道,使被光激发的电子无法直接跃迁巨}到原基态轨道发射荧光,从而导致荧光的淬灭;当键合基团与底物结合后,降低了键合基团的给电子能力,抑制了PET过程,荧光基团中被光激发的电子可以直接跃迁回到原基态轨道,从而增强了的荧光基团的荧光发射。因此在未结合底物前,传感器分子表现为荧光淬灭,一旦键合基团与底物相结合,荧光基团就会发射荧光(见图)
由于与客底物结合前后的荧光强度差别很大,呈现明显的“关”、“开”状态,因此这类荧光化学传感器又被称为荧光分子开关。PET荧光分子传感器的作用机制可由前线轨道理论“来进一步说明(见图1.5)。
2分子内电荷转移(ICT)
ICT荧光化学传感器由推电子基团、吸电子基团通过p电子体系连接而成,在基态时表现为极化结构,一端为缺电子部分,另一端为富电子部分;而在光激发下,偶极矩增大,强化了这种极化特征,容易发生ICT过程(如图)。
ICT荧光化学传感器的工作原理有两种(见图l.7a):当底物是缺电子基团(阳离子)时,一种是底物与吸电子基团结合,将增大分子内电荷转移程度,导致荧光光谱红移;一种是底物与推电子基团结合,则使原来向共扼体系转移的孤对电子用于与阳离子形成配位键,导致ICT推一拉电子的特征下降,导致荧光光谱蓝移。当底物是富电子基团(阴离子)时,情况相反。一般情况下,ICT荧光化学传感器对荧光强度的影响不如PET荧光化学传感器显著。典型例子是同时含有吸电子取代基、推电子取代基的电子体系,如氨基邻苯二甲酞亚胺、二苯基烯、氟代香豆素等。ICT荧光化学传感器的缺点是对外部环境的变化十分敏感,有较强的溶剂化效应。
在ICT中,有一种情况被称为扭曲的分子内电荷转移(TICT twisted
Intramolecular charge transfer)。在具有推一拉电子共扼体系的荧光分子中,如果推电子基(如二甲氨基)通过可旋转的单键与荧光团相连接,当荧光团被光子激发时,由于强烈的分子内光致电荷转移,导致原来与芳环共平面的电子给体绕单键旋转,而与芳环平面处于正交状态,原来的共辘系统被破坏,部分电荷转移变为完全的电子转移,形成TICT激发态(见图)。当形成TICT激发态时,原有的ICT荧光则被淬灭。TICT态常常不发射荧光或者发射弱的长波荧光,少数情况下会出现ICT与TICT双重荧光现象。
3荧光共振能量转移(FRET)
FRET荧光传感器分子的组成与其他类型传感器有所不同,除了含有键合基团(Reccptor)彩!连接基团(Spacer),还含有两个负责光吸收井产生荧光发射信号荧光基团(FluoroPhore),而这两个荧光基团一个是能量给体(Energy donor,D),另一个是能量受体(Energy acceptor,A)。
荧光共振能量转移是指在一定波长的光激发下,荧光基团中的能量给体(D) 产生荧光发射,并通过偶极一偶极之间的相互作用把能量无辐射地转移给其附近的处于基态的能量受体(A)荧光基团的过程。FRET过程的发生与很多因素如光谱重叠的程度、跃迁偶极的相对方向,给体(D)和受体(A)之间的距离等有关。首先,能量给体(D)的发射光谱与能量受体(A)的吸收光谱有明显的重叠,能量受体必须能够在能量给体的发射波长处吸收能量,但能量受体可以是荧光发射基团,也可以是荧光淬灭基团。对于前一种情形,激发能量给体时,可以观察到能量受体的荧光发射;而后一种情形,只能观察到能量给体的荧光变
化。其次,能量给体与能量受体相隔的距离必须远大于它们之间的碰撞直径(有时甚至相距远达70-100?)时,才可能发生能量给体与能量受体的非辐射能量转移,又称为长距离能量转移。另外,能量给体(D)与能量受体(A)还必须以适当的方式排列。利用FRET效率对距离的强的依赖性,FRET广泛应用于蛋白质和核酸的结构及动力学研究、分子结合的测定等领域。
例如,当荧光分子传感器的两个荧光基团都是荧光发射基团时,具体FRET工作过程如下(见图1.8):在光激发下,荧光基团中的能量给体(D)产生荧光发射;传感器分子通过键合基团键合底物来调节能量给体(D)和能量受体(A)之间的距离以及排列方向。如果
您可能关注的文档
最近下载
- 2025年内蒙古交通职业技术学院单招职业适应性考试题库带答案.docx VIP
- 2025年中国浪涌保护器市场全景评估及发展趋势研究预测报告.docx
- 《年产30万吨合成氨工艺设计.doc VIP
- 基于SpringBoot的外卖点餐系统设计与实现-毕业论文.docx VIP
- 人工智能在小学数学教学中的应用探索教学研究课题报告.docx
- 2_第9版《内科学》之类风湿关节炎课件.ppt
- 基于EPC模式的项目管理项目协调管理24课件讲解.pptx
- 2018年广东省高职院校五年一贯制单独招生考试模拟题.docx
- 2025年DeepSeek大模型及其企业应用实践报告(企业篇)-厦门大学.pptx
- 2025年国家公务员考试行测真题答案解析(判断推理) .pdf VIP
文档评论(0)