- 1、本文档共5页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于生物特征识别和数字签名技术的电子商务身份安全.doc
基于生物特征识别和数字签名技术的电子商务身份安全
[摘要] 生物特征识别技术作为一种身份识别的手段,具有独特的优势,近年来已逐渐成为研究热点之一。本文阐述了如何将生物特征识别技术与数字签名加密技术有机结合,应用于电子商务身份安全认证系统,达到有效提高电子商务交易的安全性的目的。并提出了简洁易行的身份安全认证系统解决方案结构和步骤。
[关键词] 生物特征识别 数字签名 电子商务 身份安全认证
一、引言
在电子商务应用日益广泛的今天,从某种角度看,身份认证技术可能比信息加密本身更加重要。它是网络安全和信息系统安全的第一道屏障,是在信息安全时代备受关注的一个研究领域。
目前的应用主要是以“用户ID+口令+数字证书”来进行用户的身份认证。从根本上说这种身份认证不能解决访问者的物理身份和电子身份的一致性问题,即无法确认通过身份认证的访问者即获授权者。
启发于人的身体特征具有不可复制的特点,人们开始把目光转向了生物识别技术。人的指纹、虹膜、视网膜等都具有惟一性和稳定性的特征,为实现更安全、方便的用户身份认证提供了有利的物理条件。
用户最关注的问题是因特网的网络安全性和必威体育官网网址性。保障网络中数据传输的安全性通常需要借助信息安全功能来实现。在开放系统中对具有重要价值的信息或私密信息进行通信时,可使用数字签名等密码技术进行加密。
生物识别技术代表着用户身份认证技术的未来,有着广阔的应用前景。如果将生物特征识别技术和数字签名技术有机地结合在一起,可以提供一种更加安全、便捷的用户身份认证技术。
二、生物特征识别技术
生物特征识别技术是通过计算机与光学、声学传感器和生物统计学原理等高科技手段结合,利用人体固有的生理特性来进行个人身份的鉴定。其核心在于如何获取这些生物特征,并将之转换为数字信息,存储于计算机中,利用可靠的匹配算法来完成验证与识别个人身份的过程。
1.指纹识别——成熟的身份认证技术
在网络环境下的身份认证系统中,应用指纹作为身份确认依据是理想的。
第一,理论上,每个人的指纹是独一无二的。
第二,指纹样本便于获取,易于开发识别系统,实用性强。
第三,指纹识别中使用的模板而是由指纹图中提取的关键特征,使系统对模板库的存储量较小。也可以大大减少网络传输的负担,便于支持网络功能。
第四,指纹识别是生物特征识别中研究最早、技术最成熟、应用最广泛的技术,有着坚实的市场后盾。
指纹识别具有很高的实用性、可行性。随着固体传感器技术的发展。指纹传感器的价格正逐渐下降,在许多应用中基于指纹的生物认证系统的成本是可以承受的。
指纹识别原理和过程如下:首先,通过指纹读取设备读取到人体指纹图像,并对原始图像进行初步的处理,使之更清晰。然后,指纹辨识算法建立指纹的数字表示——特征数据。特征文件存储从指纹上找到被称为“细节点”(minutiae)的数据点,也就是那些指纹纹路的分叉点或末梢点。这些数据称为模板(至今仍然没有一种模板的标准,也没有一种标准的抽象算法,各厂商自行其是)。最后,通过计算机把两个指纹的模板进行比较,计算出它们的相似程度,得到两个指纹的匹配结果。
2.虹膜和视网膜——更准确、更可靠的身份认证技术
虹膜是一种在眼睛中瞳孔内的织物状各色环状物,每一个虹膜都包含一个独一无二的基于像冠、水晶体、细丝、斑点、结构、凹点、射线、皱纹和条纹等特征的结构。世界上两个指纹相同的几率为1/109,而两个虹膜图像相同的几率是1/1011,虹膜在人的一生中均保持稳定不变。因此,利用虹膜来识别身份能够成为独一无二的标识,其可靠性超过了指纹识别。
从直径11mm的虹膜上,Dr. Daugman的算法用3.4个字节的数据来代表每平方毫米的虹膜信息,一个虹膜约有266个量化特征点,而指纹识别技术只有40多个特征点。266个量化特征点的虹膜识别算法在众多虹膜识别技术资料中都有讲述,在算法和人类眼部特征允许的情况下,Dr. Daugman指出,通过他的算法可获得173个二进制自由度的独立特征点。这在生物识别技术中,所获得特征点的数量是相当大的。
关于虹膜的特征提取方面较有成效的主要有Daugman的利用多分辨率Gabor滤波器提取虹膜纹理的相位信息;Wildes的基于4种不同决策标准的拉普拉斯金字塔提取虹膜纹理特征;Boles和Boashash的基于小波变换过零检测虹膜识别算法以及中科院采用Gabor滤波和aubechies-4小波变换相结合的纹理分析方法。
虹膜技术上有一些地方有待完善;当前的虹膜识别系统只是用统计学原理进行小规模的试验,而没有进行过现实世界的惟一性认证的试验;目前图像获取设备相当昂贵。
视网膜是一些位于眼球后部十分细小的
文档评论(0)