21 提取AP-LDP特征 - 中国图象图形学报.DOC

21 提取AP-LDP特征 - 中国图象图形学报.DOC

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
21 提取AP-LDP特征 - 中国图象图形学报

中图法分类号:TP391.4 文献标识码:A 文章编号:1006-8961(2015) - - 论文引用格式: 偏振编码方式的LDP人脸识别 魏莉, 蒋建国, 齐美彬 1.合肥工业大学计算机与信息学院, 合肥 230009 摘 要:目的 局部二值模式(LBP)作为一种简单高效的纹理特征描述算子,被广泛地应用在纹理分类和人脸识别中。针对LBP及其改进算法局部导数模式(LDP)对噪声敏感提取的纹理特征信息单一的问题,提出一种的。在ORL和YALE两个人脸库中进行实验,结本文提出的人脸识别算法提取的人脸特征更加丰富,有较高的识别率。LDP face recognition algorithm based on polarization encoding Wei Li, Jiang Jianguo, Qi Meibin 1.School of Computer and Information, Hefei University of Technology, Hefei, 230009 Abstract: LBP has been widely applied in texture classification and face recognition as a kind of texture description operator for its simplicity and high efficiency. Objective Given that the features that are extracted by the basic LBP and its variant-LDP operator are sensitive to noise, only the symbol information of the difference among local pixels is used for encoding. The binarization method is too simple to extract adequate texture feature information. Thus, this paper proposes a face recognition algorithm based on LDP through polarization encoding. Method First, the first-order derivatives along the 0°, 45°, 90°, and 135° directions are obtained. Second, the Stokes vector of the face image is built. Third, the texture feature of the face image is extracted from multiple directions. Fourth, following the encoding method of the azimuth of polarization, each sub-block histogram vector with varying weights is calculated according to the image entropy to constitute the final face feature vector via cascading. Result The experiments obtain correct recognition rates of 97.4% and 92.22% in the ORL and YALE face databases, respectively,the used time is almost the same with LBP and LDP algorithm. When the sample size is large, the complexity is lower than LBP method. In the presence of gaussian noise and salt and pepper noise, we respectively obtain correct recognition rates of 93.88%, 86.27% and 96.13%, 84.71% , they are much higher than LBP and LDP algorithm .Conclusion The proposed algorithm based on polarization

您可能关注的文档

文档评论(0)

youbika + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档