用C#实现k均值聚类算法 C# C# PAUL-MAPLE(Using C# to achieve K means clustering algorithm C#, C#, PAUL-MAPLE).doc

用C#实现k均值聚类算法 C# C# PAUL-MAPLE(Using C# to achieve K means clustering algorithm C#, C#, PAUL-MAPLE).doc

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
用C#实现k均值聚类算法 C# C# PAUL-MAPLE(Using C# to achieve K means clustering algorithm C#, C#, PAUL-MAPLE)

用C#实现k均值聚类算法 C# C# PAUL-MAPLE(Using C# to achieve K means clustering algorithm C#, C#, PAUL-MAPLE) K mean algorithm is a pattern recognition problem of poly classification, which is implemented using C# algorithm Here is the program source code: Using System; Using System.Drawing; Using System.Collections; Using System.ComponentModel; Using System.Windows.Forms; Using System.Data; Namespace KMean_win { X The Form1 / / / note. X Public class Form1: System.Windows.Forms.Form { X The designer must always variable. X Private, System.ComponentModel.Container, components = null; Private static int k = 2; / / class number, this example into 2 categories Private static int total = 20; / / point number Private int test = 0; Private PointF[] unknown = new PointF[total]; / / set points Private int[] type = new int[total]; / / each temporary class Public PointF[] z = new PointF[k]; / / save the new clustering center Public PointF[] Z0 = new PointF[k]; / / keep on a cluster center Private PointF sum; Private int temp = 0; Private System.Windows.Forms.TextBox textBox1; Private Int l = 0; / / the number of iterations / / constructor initialization Public, Form1 () { Unknown[0]=new Point (0,0); Unknown[1]=new Point (1,0); Unknown[2]=new Point (0,1); Unknown[3]=new Point (1,1); Unknown[4]=new Point (2,1); Unknown[5]=new Point (1,2); Unknown[6]=new Point (2,2); Unknown[7]=new Point (3,2); Unknown[8]=new Point (6,6); Unknown[9]=new Point (7,6); Unknown[10]=new Point (8,6); Unknown[11]=new Point (6,7); Unknown[12]=new Point (7,7); Unknown[13]=new Point (8,7); Unknown[14]=new Point (9,7); Unknown[15]=new Point (7,8); Unknown[16]=new Point (8,8); Unknown[17]=new Point (9,8); Unknown[18]=new Point (8,9); Unknown[19]=new Point (9,9); InitializeComponent (); Test = 0; Choice K initial clustering center z[i] For (int, i=0, I, z[i] = unknown[i]); For (int, i=0, I, type[i] = 0); } A new clustering center / / calculation Public PointF newCenter (int m) { Int N = 0; For (int i=0; I { if ([i] = m

文档评论(0)

jgx3536 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:6111134150000003

1亿VIP精品文档

相关文档