IP流量分类算法中特征选择作用分析.PDF

IP流量分类算法中特征选择作用分析.PDF

  1. 1、本文档共3页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
IP流量分类算法中特征选择作用分析.PDF

36 16 2010 8 Vol.36 No.16 Computer Engineering August 2010 ·· 2010 A TP393 IP ( 621010) C4.5BayesnetNBD NBK IP Analysis of Feature Selection Effect on IP Traffic Classification Algorithms HUANG Jun-yi, WU Jing, ZHANG Hui (College of Information Engineering, Southwest University of Science and Technology, Mianyang 621010) AbstractThe current study is to use Machine Learning(ML) techniques and classify Internet traffic based on per-flow features. Since a lot flow features can be used for flow classification and there are many irrelevant and redundant features among them, feature selection plays a vital role in algorithm performance optimization. This paper uses two filter-based feature selection methods for classification algorithms such as C4.5, Bayesnet, NBD, NBK. Experimental results show the approach can improve computational performance without negative impact on classification accuracy. Key wordsfeature selection; IP traffic classification; Machine Learning(ML) 1 IP TCP/IP (WWWP2PDNSSMTPFTP ) 2 [1] 2.1 [2] (1) (2) Genome Campus( 1 000 )24 h (3) 248 [2-3] 1 1 Label Count Label Count WWW 328 092 DA

文档评论(0)

tangtianbao1 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档