2008-2009纳米化学进展——低维纳米材料的制备和表征.DOC

2008-2009纳米化学进展——低维纳米材料的制备和表征.DOC

  1. 1、本文档共3页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
2008-2009纳米化学进展——低维纳米材料的制备和表征

2008-2009纳米化学低维纳米材料的制备和表征 (一) 碳纳米材料 继1985年发现C60和1991年发现碳纳米管之后,碳纳米材料始终是纳米材料和纳米科学研究的重点。从2004年起,单层石墨烯成为了目前该领域的另一个研究热点。 对于碳纳米管的生长,我国的科研人员进行了长期系统的研究,并取得了多项国际领先的科研成果。清华大学范守善等[1,2]通过调节催化剂层的厚度和反应时间批量制备壁厚和长度可控的超顺排碳纳米管阵列,这些超顺排的碳纳米管阵列可用于透射电镜微栅的制备,克服了碳膜的强度弱、导电性差等弱点;北京大学李彦等[3]通过超低气流化学气相沉积方法制备出横向的单壁碳纳米管阵列,适于多种基底和催化剂,并易于放大;针对碳纳米管生长中的结构控制问题,北京大学刘忠范等[4]通过调控化学气相沉积生长时的反应温度来控制所形成单壁碳纳米管的管径,并且可以在纳米管轴向上制备出金属-金属、半导体-半导体、金属-半导体等不同分子内纳米结。他们[5]使用相对低廉和简单的氙灯照射的方法,有效地去除单壁碳纳米管阵列中管径较小的和金属性的碳纳米管,从而选择性地得到半导体单壁碳纳米管的阵列,对于进一步制备纳米管电子器件有重要意义。他们[6, 7]还结合原子力显微镜(AFM)操纵技术和共振拉曼光谱方法研究了碳纳米管的弯曲和扭转形变特性以及形变对能带结构的影响,发现了碳纳米管在弯曲过程中的两种屈曲行为和“双尺寸效应”的存在,并证明了扭转形变下单壁碳纳米管能带结构的变化方向与碳纳米管的手性相关。 单层石墨是一种由一层碳原子组成的新型二维纳米碳材料,厚度为0.35nm。目前发现,这种材料的导电能力和载流密度都超过目前最好的单壁碳纳米管;其优良的量子霍尔效应也已得到证明;最近基于这一材料获得的薄膜及其复合材料具有优良的机械性能也见诸报道。由于其特殊的结构和许多优良的性质,单层石墨被认为有广泛的应用前景,有望在微电子、机械和医学等领域掀起一场新的材料革命。 研究人员使用传统的氧化法解理石墨片,还原离心分离得到的单层石墨氧化物,可以批量制备单层石墨,并测量旋涂制备的由单层石墨组成的透明薄膜的电学性质。南开大学陈永胜等[8]利用此方法制备的水溶性卟啉修饰单层石墨样品表现了良好的非线性光学性能。另外,利用聚噻吩作为电子给体、单层石墨为受体形成的体相异质结有机光伏电池,在空气条件下达到了1.4%的光电转化效率[9,10]。 化学所的李洪祥等[11]通过溶剂诱导的自组装方法控制合成了具有面心立方晶体结构的富勒烯纳米棒,其长径比随反应物溶液中的C60的浓度改变。所制备的基于C60纳米棒的微纳电子器件在持续高电压下能稳定地工作,推动了C60纳米棒材料在微电子器件以及化学传感器件中的应用。 (二)金属纳米材料 厦门大学孙世刚等[12,13]利用铂晶体高指数晶面在氧化条件下稳定性高的特点,通过方波电位产生的周期性氧化/还原反应的驱动,调控纳米晶体生长过程中的表面结构,首次制备出具有高指数晶面结构的面体铂纳米晶体;同时控制反应条件,可使铂纳米晶体的尺度在到几百内变化。这种具有高表面能的面体铂纳米晶粒有很高的催化活性和稳定性。以单位铂表面积来计算,它对甲酸、乙醇等有机小分子燃料电氧化的催化活性是目前商业铂纳米催化剂的2(4倍,且可承受高达800的高温,显示了其在燃料电池、电催化等领域中的重大应用价值。 通过调节反应溶剂十二烷基胺的浓度,研究人员发展了一步可控合成立方相和六角相镍纳米晶的实验方法,该方法可以控制不同晶相的生长[14]。使用巯基琥珀酸作为还原剂和表面活性剂,在室温液相条件下可以一步合成得到单分散性好(标准分布10%)的近球形金纳米颗粒,外延生长后可以得到尺寸范围在30( 150 nm的金纳米球[15]。该结果为进一步研究外延生长的热力学和动力学提供基础。在不借助模板和表面活性剂条件下,可以使用电化学方法来制备具有分级纳米结构的金材料,电沉积的时间和电位调节了生长尺寸的大小,此方法制备出的金纳米结构成“花”状,由金纳米盘或金纳米片堆积而成,表面洁净[16]。 (三)氧化物纳米材料 清华大学李亚栋等[17]成功制备了具有不同形貌、尺寸单分散的CeO2纳米球。实验发现,当体系中的含水量增大时,所得到的CeO2纳米粒子由球形变为近立方形。利用柯肯达尔效应,将制得的CeO2纳米球与ZrOCl2发生反应,可以得到不同的形貌、不同尺寸以及不同组分的CeO2-ZrO2纳米笼。通过改变Zr4+前驱体与CeO2的比例,可以改变所得到的纳米笼的壳厚度。利用纳米笼的可渗透性,不同的贵金属催化剂可以通过控制沉积在笼的内外表面,因此这种具有笼状结构的纳米材料可以作为环境催化的微反应器。清华大学王迅等[18]使用硫醇为表面活性剂,首次制备出了层状化合物β-MoO3的单壁纳米管。 采用多流体复合电纺丝方法,

文档评论(0)

youbika + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档