- 1、本文档共202页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第四章数字集成电路设计基础 42 cmos反相器 - read
第四章 数字集成电路设计基础 4.1 MOS开关及CMOS传输门 4.2 CMOS反相器 4.3 全互补CMOS集成门电路 4.4 改进的CMOS逻辑电路 4.5 移位寄存器、 锁存器、 触发器、 I/O单元 4.1 MOS开关及CMOS传输门 4.1.1 单管MOS开关 1. NMOS单管开关 NMOS单管开关电路如图 4 - 1(a)所示, 图中CL为负载电容, UG为栅电压, 设“1”表示UG=UDD, “0”表示UG=0(接地)。 (1) 当UG=“0”(接地)时, NMOS管截止(开关断开), 输出Uo=0。 (2) 当UG=“1”(UDD)时, NMOS管导通(开关合上), 此时视Ui的大小分两种情况: ① UiUG-UTH(UTH为NMOS管阈值电压), 输入端呈开启状态, 设Uo初始值为零, 则Ui刚加上时, 输出端也呈开启状态, NMOS管导通, 沟道电流对负载电容充电, 直至Uo=Ui。 ② UiUG-UTH, 输入端沟道被夹断, 此时若Uo初始值小于(UG-UTH), 则输出端沟道存在, NMOS管导通, 沟道电流对CL充电, Uo上升。但随着Uo上升, 沟道电流逐渐减小, 当Uo升至(UG-UTH)时, 输出端沟道也被夹断, 导致NMOS管截止, 从而使输出电压Uo维持在(UG-UTH)不变。 若此时Ui=UG=UDD, 则输出电压Uo为 Uo=UG-UTH=Ui-UTH=UDD-UTH (4 - 1) 2. PMOS单管开关 PMOS单管开关电路如图 4 - 2(a)所示, 其衬底接UDD。 (1) 当UG=“1”(接UDD, 高电平)时, PMOS管截止, 开关断开, Uo=0。 (2) 当UG=“0”(接地, 低电平)时, PMOS管导通, 视Ui的大小不同, 也分两种情况: ① Ui=“1”(UDD)时, 输入端沟道开启导通, 电流给CL充电, Uo上升, 输出端沟道也开启, 开关整个接通, 有Uo=Ui=“1” ② Ui=“0”(低电平)时, 输入端沟道被夹断, 此时要维持沟道导通, 则输出端沟道开启, 输出电压Uo必须比UG高一个PMOS管的阈值电压|UTHP|。 因此, 当传输输入为0的信号时, 输出同样存在所谓的“阈值损失”, 如图4 - 2(b)所示, 即 Uo=|UTHP| (4 - 2) 结论是: 当开关控制电压(UG)使MOS管导通时, NMOS、 PMOS传输信号均存在阈值损失, 只不过NMOS发生在传输高电平时, 而PMOS发生在传输低电平时。 图4 - 3给出了阈值损失的波形示意图。 4.1.2 CMOS传输门 根据NMOS和PMOS单管开关的特性, 将其组合在一起形成一个互补的CMOS传输门, 这是一个没有阈值损失的理想开关。 1. CMOS传输门电路 CMOS传输门电路如图 4 - 4所示, NMOS管和PMOS管的源极、 漏极接在一起, NMOS衬底接地, PMOS衬底接UDD(保证了沟道与衬底之间有反偏的PN结隔离), 二者的栅极控制电压反相, 即UGP= 。 2. CMOS传输门的直流传输特性 CMOS传输门的直流传输特性如图 4 - 5所示, 它不存在阈值损失问题, 其理由说明如下: (1) 当UGN=“0”, UGP=“1”时, N管、 P管均截止, Uo=0。 (2) 当UGN=“1”, UGP=“0”时, Ui由“0”升高到“1”的过程分为以下三个阶段(分析中, 设“1”为UDD=5V, “0”为接地(0 V), UTHN=|UTHP|=0.9 V): ① Ui较小, 有 ② Ui升高, 有 UGN-UiUTHN N管导通 |UGP-Ui||UTHP| P管导通 ③ Ui再升高, 接近“1”时, 有 UGN-UiUT
文档评论(0)