网站大量收购独家精品文档,联系QQ:2885784924

mse best learning curves selected from the four parts 资讯工程所 .ppt

mse best learning curves selected from the four parts 资讯工程所 .ppt

  1. 1、本文档共100页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
mse best learning curves selected from the four parts 资讯工程所

Chapter 4 Multilayer Perceptrons Introduction Multilayer perceptrons The network is consists of a set of sensory units, that constitute the input layer, one or more hidden layers of computation nodes, and an output layer of computation nodes. 屬於supervised learning,是一種基於error-correction learning的error back-propagation algorithm 包含兩個階段:forward pass和backward pass Forward pass: an activity pattern is applied to the sensory nodes , and its effect propagates through the network layer by layer. Backward pass: the synaptic weights are all adjusted in accordance with an error-correction rule. The error signal is propagated backward through the network. Introduction (cont.) A multilayer perceptron has three distinctive characteristic: The mode of each neuron in the network includes a nonlinear activation function. Sigmoidal nonlinearity The network contains one or more layers of hidden neurons. Enable the network to learn complex tasks by extracting progressively more meaningful features from the input patterns. The network exhibits a high degrees of connectivity, determined by the synapses of the network. Some preliminaries The architectural graph of a MLP with two hidden layers and an output layer. Some preliminaries (cont.) Two kinds of signals are identified: Function signals Comes in at the input end of the network, propagates forward through the network, and emerges at the output end of the network as an output signal. Error signal Originates at an output neuron of the network, and propagates backward through the network Some preliminaries (cont.) 在multilayer perceptron中的每個隱藏層或輸出層的神經元都被設計來執行兩種計算功能: 神經元的輸出是輸入訊號經由權重的連結經一非線性轉換所得到的結果 用來估計梯度向量(gradient vector) ,以回傳到整個網路 Signal-flow graph highlighting the details of output neuron j Back-propagation algorithm (cont.) The error signal at the output of neuron j at iteration n is defined by The instantaneous value of the total error energy is defined as The average squared error energy is obtained by summing E(n) over a

您可能关注的文档

文档评论(0)

yanpizhuang + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档