8.6 DISSIPATIVE PARTICLE DYNAMICS(8.6耗散粒子动力学).pdf

8.6 DISSIPATIVE PARTICLE DYNAMICS(8.6耗散粒子动力学).pdf

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
8.6 DISSIPATIVE PARTICLE DYNAMICS(8.6耗散粒子动力学)

8.6 DISSIPATIVE PARTICLE DYNAMICS ˜ Pep Espanol Dept. Física Fundamental, Universidad Nacional de Educaci´on a Distancia, Aptdo. 60141, E-28080 Madrid, Spain 1. The Original DPD Model In order to simulate a complex fluid like a polymeric or colloidal fluid, a molecular dynamics simulation is not very useful. The long time and space scales involved in the mesoscopic dynamics of large macromolecules or colloidal particles as compared with molecular scales imply to follow an exceedingly large number of molecules during exceedingly large times. On the other hand, at these long scales, molecular details only show up in a rather coarse form, and the question arises if it is possible to deal with coarse-grained entities that reproduce the mesoscopic dynamics correctly. Dissipative particle dynamics (DPD) is a fruitful modeling attempt in that direction. DPD is a stochastic particle model that was introduced originally as an off-lattice version of Lattice gas automata (LGA) in order to avoid its lattice artifacts [1]. The method was put in a proper statistical mechanics context a few years later [2] and the number of applications since then is growing steadily. The original DPD model consists of a collection of soft repelling frictional and noisy balls. From a physical point of view, each dissipative par- ticle is regarded not as a single molecule of the fluid but rather as a collection of molecules that move in a coherent fashion. In that respect, DPD can be understood as a coarse-graining of molecular dynamics. There are three types of forces between dissipative particles. The first type is a conservative force deriving from a soft potential that tries to capture the effects of the “pres- sure” between different particles. The second type of force is a friction force between the particles that wants to desc

文档评论(0)

wnqwwy20 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:7014141164000003

1亿VIP精品文档

相关文档