Image Restoration - Electrical and Computer (图像恢复电子和计算机).pdf

Image Restoration - Electrical and Computer (图像恢复电子和计算机).pdf

  1. 1、本文档共41页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Image Restoration - Electrical and Computer (图像恢复电子和计算机)

Image Restoration EE 528 Digital Image Processing All images taken from Gonzalez and Woods online slides /DIP/dip _faculty/classroom_presentations_downloads .htm Material mostly based on A.K. Jain’s book Some topics taken from Gonzalez Woods Intuition images on slides, math details will be covered in class or is in the book Image Enhancement or Restoration Most of what we learnt in Image Enhancement chapter can also be classified as Image Restoration techniques. Specifically Linear filtering (low pass for noise reduction, high pass for edge sharpening, band-pass for both) Median filtering (for salt and pepper noise), Log-domain filtering and other nonlinear techniques Inverse Pseudo-inverse Filters Inverse Filter Assumes no noise, only blurring. Blurring filter known In case of noise If blurring filter has zeros at some frequencies (which it will since it is a low-pass filter), those frequencies will be amplified in the noise Pseudo-inverse filter: removes the problem at zero (or near zero) frequencies, but still amplifies noise at other frequencies where the blurring filter response is not zero but small Image blurred by atmospheric turbulence with additive noise Inverse v/s Pseudo-inverse filtering Wiener Smoother Assumes image is blurred and has additive noise (independent of image) Need to know Blurring filter Noise covariance True image autocorrelation Mean of noise of true image (or assume zero mean) Gives “linear MMSE” estimate: linear filter with least expected value of MSE w.r.t. the true image Truly MMSE when the observed and true image are jointly Gaussian Motion blurred image Pseudo-inverse v/s Wiener Column 2: Pseudo-inverse Column 3: Wiener Maximum noise in row 1, least in row 3 Wiener smoother Observed: v. True: u, convo

您可能关注的文档

文档评论(0)

wnqwwy20 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:7014141164000003

1亿VIP精品文档

相关文档