Learning NonRigid 3D Shape from 2D Motion(学习非刚性的三维形状的二维运动).pdf

Learning NonRigid 3D Shape from 2D Motion(学习非刚性的三维形状的二维运动).pdf

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Learning NonRigid 3D Shape from 2D Motion(学习非刚性的三维形状的二维运动)

Learning Non-Rigid 3D Shape from 2D Motion Lorenzo Torresani Aaron Hertzmann Stanford University University of Toronto ltorresa@ hertzman@ Christoph Bregler New York University chris.bregler@ Abstract This paper presents an algorithm for learning the time-varying shape of a non-rigid 3D object from uncalibrated 2D tracking data. We model shape motion as a rigid component (rotation and translation) combined with a non-rigid deformation. Reconstruction is ill-posed if arbitrary deforma- tions are allowed. We constrain the problem by assuming that the object shape at each time instant is drawn from a Gaussian distribution. Based on this assumption, the algorithm simultaneously estimates 3D shape and motion for each time frame, learns the parameters of the Gaussian, and robustly fills-in missing data points. We then extend the algorithm to model temporal smoothness in object shape, thus allowing it to handle severe cases of missing data. 1 Introduction We can generally think of a non-rigid object’s motion as consisting of a rigid component plus a non-rigid deformation. For example, a person’s head can move rigidly (e.g. turning left or right) while deforming (due to changing facial expressions). If we view this non-rigid motion from a single camera view, the shape and motion are ambiguous: for any hypotheti- cal rigid motion, a corresponding 3D shape can be devised that fits the image observations. Even if camera calibration and rigid motion are known, a depth ambiguity remains. Despite this apparent ambiguity, humans interpret the shape and motion of non-rigid objects with relative

文档评论(0)

wnqwwy20 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:7014141164000003

1亿VIP精品文档

相关文档