315超再生接收电路 理解以及实现.doc

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
315超再生接收电路 理解以及实现

把最近看的一些关于超再生文章总结一下,个人理解,仅能参考。 Q1进行选频放大,滤除无用频率信号;Q2与C、C、L2等元件组成超再生高频接收电路,微调L2改变其接收频率,使之严格对准发射频率。当L1收到调制波时,经Q1调谐预放大,再经Q2检波调制信号送入前放大器放大。C相对于自激频率来讲是个大电容,充电完成后自激熄灭导致放电(R9、C、C起自熄作用),之后继续下一个自激过程。ASK信号的检波解码是靠后比较器来完成的,据噪声电压的平均值与电压本身(R11和R12分压2.5V),用比较器比较出1或者0的信号。晶体管的B和C之间通过交流连接LC6和C4, C9和BE之间的结电容构成分压反馈,形成三点式振荡器。?L4用来隔绝振荡频率与地之间的连通。振荡器工作时,随着振荡幅度增加,晶体管电流Ice增加,这个Ice流过R,会使R两端电压成增长趋势,而C两端电压已经建立(静态工作点建立时建立的),无法突变,因此改电流对C充电,使其两端电压升高,晶体管BE电压下降,工作点开始降低,当降低到一定程度,电路开始停振,Ice随振荡逐渐停止而减小,这使得R两端电压成减小趋势,C开始通过R放电,C两端电压降低,晶体管工作电提升,振荡幅度开始回升,重复前面的过程,因此振荡器工作在一个间歇振荡状态,振荡的波形类似有三角波或类似方波包络线的调幅信号,间歇频率由C和R决定,约为它们乘积的倒数。C和R两端的电压为类似类似方波或三角波(这个与原始静态工作点有关,原始静态工作点高,振荡建立快,C很快冲点饱和,此时电路为平衡状态,振幅不便,一段时间后振幅开始跌落,如果振荡建立慢,则未到最大振幅就开始跌落,此时为三角波形),经过后面的电感电容网络滤波后,理论上为直流电压(为什么是理论上,后面讲),以下简称RC9为RC,L2C为LC。此电路为自熄式,间歇频率由自身提供,与振荡频率牵连比较大,较难调整,如果间歇频率由外部输入,则称他熄式,这种电路的间歇频率波形可以用标准方波,效果更好。 好了,基本电路工作原理清楚了,现在看看电路是怎么接收信号的,先从调幅信号来说。 LC构成的回路由选频作用,当天线输入的信号频率与电路振荡频率相同时,对电路的振荡幅度有加强作用,类似于正反馈,此时电路正式进入超再生状态。通过前面的分析知道,电路振荡建立的速度与工作点有关,而振荡幅度受到改变时工作点也会相应变化,因此外部调幅信号使晶体管工作点随输入信号幅度变化而变化,而工作点的变化,又影响振荡的建立时间。因此就形成了这样的现象,输入信号幅度大,间歇振荡建立快,间歇振荡能达到的最大振幅就大(或者越早达到最大振幅),反之同理。因此高频间歇振荡在每个间隙之间能达到的最大振荡幅度(或持续最大幅度的时间)是随外部输入信号的幅度而变化的,而间歇振荡的包络线就是RC两端的电压,这个电压中包含一个直流分量,这个直流分量就是随外部信号幅度而变化的(类似PWM原理),也就是输入信号的包络线,因此达到解调制的目的,具体见下图。 朝再生2.gif (4.85 KB) 2009-7-1 02:23 第一个波形的熄灭电压是个示意图,第二个波形是高频振荡波形,这是有信号输入的状态,如果没信号,每个间歇内都是一样的,第三个波形是RC两端的波形,里面的平滑波形是经过后面的滤波网络后的波形。可以看到,外部信号的幅度变化时,每个间歇内振荡波形的包络面积会相应改变,此图上的包络线为类似三角波,根据不同的工作点,有些资料上的图画的是类似方波(比如《晶体管收音机》一书) 上面说的是调幅信号接收,那么调频信号接收是怎么样的呢,先看一个概念,斜率鉴频,如下图 斜率检波.GIF (2.78 KB) 2009-7-1 02:23 这是一个LC谐振曲线,fo为谐振频率,fs为输入信号频率,fs偏离fo,在LC谐振曲线一边的中间点部位,当输入中心频率为fs的调频信号时,由于频率-幅度曲线的斜率,在LC上感应到的电压幅度会随频率变化而变化,此时调频信号变成了调幅信号,这就是斜率鉴频。说到这里可能有人已经知道了,超再生电路解调调频信号时,用的正是斜率鉴频原理。我们只需要把LC回路的谐振频率调到偏离fs的位置,就能把调频信号转换成调幅信号,按照上面的原理进行接收。 超再生电路由于其特殊的工作方式,灵敏度很高,但是其选频手段单一,选择性极差,只相当于单回路的直放机水平,甚至不如。尤其在接受调频信号时,由于采用了斜率鉴频原理,在很宽的范围内都可以收到同一频率的调频信号,选择性更差。而采用斜率鉴频也使调频接收的抗干扰能力变得很低(无法抑制幅度噪声),一般在单频点接收机中用的比较多,比如遥控电路,频点单一就可以用多极LC选频放大来提高选择性(频带接收下这种做法是超级麻烦的)。在没有信号时,理论上RC两端电压的直流分量是不变化的,但是电路本身的分布参

文档评论(0)

hhuiws1482 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:5024214302000003

1亿VIP精品文档

相关文档