- 1、本文档共50页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
逆变电流设计毕业论文
第1章 绪论
1.1 研究逆变电源的意义
随着各行各业控制技术的发展和对操作性能要求的提高,许多行业的用电设备都不是直接用交流电网提供的交流电作为电能源,而是通过各种形式对其进行变换,从而得到各自所需的电能形式。逆变就是对电能进行变换和控制的一种基本形式,它完成将直流电变换成交流电的功能。现代逆变技术是研究现代逆变电路的理论和应用设计方法的学科,这门学科综合了现代电力电子开关器件技术、现代功率变换技术、模拟和数字电子技术、PWM技术、开关电源技术和现代控制技术等多种实用设计技术,已被广泛的用于工业和民用领域中的各种功率变换系统和装置中。
早期的变频电源,只需要其输出电压、频率可调即可,然而,今天的变频电源除这些要求外,还必须环保无污染,即绿色环保变频电源。因而高性能的变频电源必须满足:(l)高的输入功率因数,低的输出阻抗;(2)快速的暂态响应,稳态精度高;(3)稳定性高,效率高,可靠性高;(4)低的电磁干扰;(5)智能化。
由于传统的变频电源采用模拟控制技术,难以实现上述要求。因而,研究数字化控制技术的绿色变频电源技术,对当今提出的“节能、高效、绿色、环保”工业口号的实现具有重要意义。
1.2 目前研究的现状
一般的电源跟负载相连,因而这里仅讨论无源逆变技术。从相关文献可知,目前对逆变电源的研究主要集中在以下几个方面:
1.2.1 拓扑形式
目前常用的逆变电路拓扑形式主要有:常规逆变电路拓扑,软开关逆变电路拓扑,多电平逆变电路拓扑等。
1 常规逆变电路拓扑
常规逆变电路拓扑可分为单相半桥、单相桥式、三相桥式电路等,根据直流侧电源性质,又可将其分为电压源型逆变电路(VSTI)和电流源型逆变电路(CSTI)。
单相逆变电路的优点是简单,使用器件少,常用于几KW以下的小功率逆变电源。三相桥式逆变电源应用较多。
2 软开关逆变电路拓扑
逆变电源为得到更好的交流输出波形,将会提高全控型电力电子器件的开关频率,同时,开关损耗也会随之增加,电路效率严重下降,电磁干扰也增大了,所以简单的提高开关频率是不行的。针对这些问题出现了软开关技术,它是以谐振为主的辅助换流手段,解决了电路中的开关损耗和开关噪声问题,使开关频率可以大幅度提高。软开关技术总的来说可以分为零电压(ZVS)ZCS)两类,按照其出现的先后,可以将其分为准谐振、零开关PWM和PWM三大类。 每一类都包括拓扑和众多的派生拓扑。
3 三电平或多电平逆变电路拓扑
多电平逆变器的思想最早由日本Nabae于20世纪80年代初提出的。其基本原理是通过多个直流电平来合成逼近正弦输出的阶梯波电压。其优点是减小逆变器输出谐波,降低了开关管电压应力。多电平拓扑结构种类较多,但是大致可分为:二极管钳位型,飞跨电容性和独立直流电源级联多电平这三种拓扑结构。这三种多电平拓扑结构各有优点,其中应用最广泛的是二极管钳位型多电平拓扑结构。??
1.2.2 调制形式
1 方波控制
方波逆变器输出的交流电压波形为方波此类逆变器所使用的逆变线路也不完全相同,但共同的特点是线路比较简单,使用的功率开关管数量很少。这类逆变器还有调压范围不够宽,保护功能不够完善,噪声比较大等缺点设计功率一般在百瓦至千瓦之间。SVPWM调制
SVPWM (空间电压矢量控制PWM)也叫磁通正弦PWM法它以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,用逆变器不同的开关模式所产生的实际磁通去逼近基准圆磁通,由它们的比较结果决定逆变器的开关,形成PWM波形此法从电动机的角度出发,把逆变器和电机看作一个整体,以内切多边形逼近圆的方式进行控制,使电机获得幅值恒定的圆形磁场(正弦磁通)PWM逆变和PWM整流技术中。
3 SPWM调制
SPWM法就是用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值① 温度漂移小,抗干扰能力强,可靠性高,稳定性好。② 数字式部件结构牢固,体积小,重量轻,耗能少,易于标准化。③ 提高了信息存储、监控、诊断以及分级控制的能力,使系统更趋于智能化,系统维护方便。④ 控制策略灵活,可以方便实现许多复杂、智能的算法提高性能。但同时也出现了如下问题:量化过程的误差使系统性能有所下降,数字处理器采样、计算延时带来的变频电源最大占空比受限问题等,这些问题使得数字控制在变频电源性能提高的发挥中受到了阻碍。为了提高数字控制变频电源的性能,国内外学者大都致力数字控制方面的研究,提出了大量卓有成效的数字控制方案:
(l) 单闭环PID控制
早期的逆变
文档评论(0)