- 1、本文档共4页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
22本数据分析、挖掘的好书推荐―绝对干货,不看后悔!
1. 深入浅出数据分析
这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。
难易程度:非常易。
2.啤酒与尿布
通过案例来说事情,而且是最经典的例子。
难易程度:非常易。
3.数据之美
一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。
难易程度:易。
4.集体智慧编程
学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子介绍了机器学习和数据挖掘中的算法,浅显易懂,还有可执行的Python代码。
难易程度:中。
5.Machine Learning in Action
用人话把复杂难懂的机器学习算法解释清楚了,其中有零星的数学公式,但是是以解释清楚为目的的。而且有Python代码,大赞!目前中科院的王斌老师(微博: @王斌_ICTIR)已经翻译这本书了 机器学习实战 (豆瓣)。这本书本身质量就很高,王老师的翻译质量也很高。
难易程度:中。
6.推荐系统实践
这本书不用说了,研究推荐系统必须要读的书,而且是第一本要读的书。
难易程度:中上。
7.数据挖掘导论
最近几年数据挖掘教材中比较好的一本书,被美国诸多大学的数据挖掘课作为教材,没有推荐Jiawei Han老师的那本书,因为个人觉得那本书对于初学者来说不太容易读懂。
难易程度:中上。
8.The Elements of Statistical Learning
这本书有对应的中文版:统计学习基础 (豆瓣)。书中配有R包,非常赞!可以参照着代码学习算法。
难易程度:难。
9.统计学习方法
李航老师的扛鼎之作,强烈推荐。
难易程度:难。
10.Pattern Recognition And Machine Learning
经典中的经典。
11.Machine Learning
去年出版的新书,作者Kevin Murrphy教授是机器学习领域中年少有为的代表。这书是他的集大成之作,写完之后,就去Google了,产学研结合,没有比这个更好的了。
12.Bayesian Reasoning and Machine Learning
看名字就知道了,彻彻底底的Bayesian学派的书,里面的内容非常多,有一张图将机器学习中设计算法的关系总结了一下,很棒。
13.Machine Learning for Hackers
也是通过实例讲解机器学习算法,用R实现的,可以一边学习机器学习一边学习R。
14.Probabilistic Graphical Models
鸿篇巨制,这书谁要是读完了告诉我一声。
15.Convex Optimization
凸优化中最好的教材,没有之一了。课程也非常棒,Stephen老师拿着纸一步一步推到,图一点一点画,太棒了。
16.Graphical Models, Exponential Families, and Variational Inference
这个是Jordan老爷子和他的得意门徒 Martin J Wainwright 在 Foundation of Machine Learning Research上的创刊号,可以免费下载,比较难懂,但是一旦读通了,graphical model的相关内容就可以踏平了。
17.Introduction to Semi-Supervised Learning
半监督学习必读必看的书。
18.Learning to Rank for Information Retrieval
微软亚院刘铁岩老师关于LTR的著作,啥都不说了,推荐!
19.Learning to Rank for Information Retrieval and Natural Language Processing
李航老师关于LTR的书,也是当时他在微软亚院时候的书,可见微软亚院对LTR的研究之深,贡献之大。
20.SciPy and NumPy
这本书可以归类为数据分析书吧,因为numpy和scipy真的是非常强大啊。
21.Python for Data Analysis
作者是Pandas这个包的作者,看过他在Scipy会议上的演讲,实例非常强,用pandas做数据分析!
22.Bad Data Handbook
很好玩的书,作者的角度很不同。
您可能关注的文档
- 2017宁夏事业单位行测技巧:朴素逻辑中的单纯元素对应问题.doc
- 2017年 华中科技大学 853经济学综合 硕士研究生招生考试大纲.pdf
- 2017山西公务员行测技巧:用递推关系解逻辑填空.docx
- 2017届江苏省如东前黄栟茶马塘四校高三12月联考物理试题.docx
- 2017寒假 复数.doc
- 2017年九江事业单位热点之“公车标识化”.doc
- 2017年中山大学报考点现场确认注意事项汇总.pdf
- 2017年北京林业大学风景园林硕士考研历年真题考研考研录取.pdf
- 2017年北林风景园林硕士考研专业课考研复习笔记参考书考研录取.pdf
- 2017年华南理工大学 883西方哲学史 硕士研究生考试大纲及参考书目.pdf
最近下载
- IATF 16949试题附有答案.docx VIP
- 机动车与非机动车区别.ppt VIP
- 高中思想政治选择性必修第1册 综合探究 国家安全与核心利益.ppt VIP
- 2024至2030年中国脱水蔬菜行业销售形势分析及投资规模预测报告.docx
- 王戎不取道旁李教学设计一等奖(集锦4篇).docx
- 油用牡丹种植效益分析.doc
- DreamweaverCC实例教程01 初识Dreamweaver CC 2019.pdf VIP
- 人教版(2024新版)九年级上册化学:第五单元 化学反应的定量关系 教案教学设计(2个课题+1个活动).docx
- 湘教版初中数学知识点总复习资料.pdf
- 医药公司财务管理制度.docx
文档评论(0)