遗传算法文件.pdf

  1. 1、本文档共45页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
遗传算法文件

“ 活的有机体是解决问题的专家。它们所表现出 来的各种才能足以使最好的计算机程序自惭形 秽。这种现象尤其令计算机科学家们感到痛楚。 计算机科学家们为了某种算法可能花费数月乃 至数年的脑力劳动,而有机体则能通过进化和 自然选择这样一种显然并非定向进行的机制获 得这种能力。” John Holland  Darwin的进化论 “ 自然选择、适者生存” 特定环境的考验  种群中个体的选择  种群中的交叉繁殖  种群中个体的变异 上述操作反复执行,个体逐渐优化 遗传算法的手工模拟计算示例 为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。 例:求下述二元函数的最大值: max f(x ,x )=x 2+x 2 1 2 1 2 s.t. x1  {1,2,3,4,5,6,7} x2  {1,2,3,4,5,6,7} (1) 个体编码 遗传算法的运算对象是表示个体的符号串,所以必须把变量x , x 编码为一种 1 2 符号串。本题中,用无符号二进制整数来表示。 因x , x 为0 ~ 7之间的整数,所以分别用3位无符号二进制整数来表示,将它 1 2 们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可 行解。 例如,基因型X =101110 所对应的表现型是:x =[ 5,6 ] 。 个体的表现型x和基因型X之间可通过编码和解码程序相互转换。 (2) 初始群体的产生 遗传算法是对群体进行的进化操作,需要给其淮备一些表示起始有哪些信誉好的足球投注网站点的初始 群体数据。 本例中,群体规模的大小取为4,即群体由4个个体组成,每个个体可通过随机 方法产生。 如:011101,101011,011100,111001 (3) 适应度汁算 遗传算法中以个体适应度的大小来评定各个个体的优劣程度,从而决定其遗传 机会的大小。 本例中,目标函数总取非负值,并且是以求函数最大值为优化目标,故可直接 利用目标函数值作为个体的适应度。 (4) 选择运算 选择运算(或称为复制运算)把当前群体中适应度较高的个体按某种规则或模型 遗传到下一代群体中。一般要求适应度较高的个体将有更多的机会遗传到下一代 群体中。 本例中,我们采用与适应度成正比的概率来确定各个个体复制到下一代群体中 的数量。其具体操作过程是: • 先计算出群体中所有个体的适应度的总和 fi ( i=1.2,…,M ); • 其次计算出每个个体的相对适应度的大小f / f ,它即为每个个体被遗传 i i 到下一代群体中的概率, • 每个概率值组成一个区域,全部概率值之和为1; • 最后再产生一个0到1之间的随机数,依据该随机数出现在上述哪一个概率区 域内来确定各个个体被选中的次数。 个体编号 初始群体p(0) x1 x2 适值 占总数的百分比 选择次数 选择结果 1 011101 3 5 34 0.24 1 011101 2 101011 5 3 34 0.24 1 111001 3 011100 3 4 25 0.17 0 101011 4 111001 7 1 50

文档评论(0)

wangyueyue + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档