基于多源遥感影像的多尺度城植被覆盖度估算.doc

基于多源遥感影像的多尺度城植被覆盖度估算.doc

  1. 1、本文档共15页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于多源遥感影像多尺度高永刚徐涵秋福州大学环境与资源学院福州大学福州大学福建省水土流失遥感监测评估与灾害防治重点实验室福州摘要均方根误差作为评价指标等指数估算模型影像获得的表明覆盖度中图法分类号文献标识码收稿日期修回日期基金项目福建省测绘局局校合作项目福建省教育厅科技项目国家自然科学基金国家科技支撑计划项目福州大学科研基金作者简介高永刚男博士讲师主要从事遥感图像处理应用和卫星测高的研究引言是地表植被覆盖程度的重要这三种方法各具特点其中植被指数法应用广泛由于植被的反射光谱为植被本身下垫面土质土壤亮

基于多源遥感影像多尺度高永刚,3, 徐涵秋,3 (1 福州大学环境与资源学院350116;2 福州大学350116; 3 福州大学福建省水土流失遥感监测评估与灾害防治重点实验室,福州,350116) 摘 要均方根误差作为评价指标NDVI等指数估算模型,影像获得的表明:覆盖度 中图法分类号:P237. 3;TP751.1 文献标识码:A Study on the Multi-scale Fraction Vegetation Cover based on Multi-sensor Remote Sensing Images GAO Yonggang1,2* and XU Hanqiu1,2 (1. College of Environment and Resources, Fuzhou University, Fuzhou 350116, China; 2. Institute of Remote Sensing Information Engineering, Fuzhou University, Fuzhou 350116, China; 3. Fujian Provincial Key Laboratory of Remote Sensing of Soil Erosion, Fuzhou University, Fuzhou 350116, China) Abstract: With remote sensing images of IKONOS, SPOT5, and Landsat ETM+ and using the fraction vegetation covers with different spatial resolutions derived from a 1:500 topographic map as the reference map, we compared the accuracy of fraction vegetation cover extracted from the images radiometrically corrected using different models, and proposed the optimal radiometric correction model for the extraction of urban fraction vegetation cover. We used six different vegetation indices to enhance vegetation information from multi-scale remote sensing images, and then we calculated the fraction vegetation cover by using Gutman and Carlson fraction vegetation cover models, respectively. Through comparative analysis of the experimental results, we conclude that ICM model is the best radiometric correction model for urban fraction vegetation cover estimation. For high special resolution remote sensing image, NDVI is the best vegetation index for fraction vegetation cover estimation. While the best vegetation indices for estimating fraction vegetation cover from moderate spatial resolution images are the RVI and MSAVI. In terms of the study area, the fraction vegetation cover estimated by Gutman model is more accurate than by Carlson model. At the same time, the scales of remote sensing fraction vegetation cover were analyzed using the fraction vegetation cover data derived from the

您可能关注的文档

文档评论(0)

wangsux + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档