网站大量收购独家精品文档,联系QQ:2885784924

南京大学周志华老师的一个讲普适机器学习的ppt【精品-ppt】分析.ppt

南京大学周志华老师的一个讲普适机器学习的ppt【精品-ppt】分析.ppt

  1. 1、本文档共25页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
南京大学周志华老师的一个讲普适机器学习的ppt【精品-ppt】分析

普适机器学习 (Pervasive Machine Learning);机器学习是人工智能的核心研究领域之一 任何一个没有学习能力的系统都很难被认为是一个真正的智能系统 经典定义:利用经验改善系统自身的性能 随着该领域的发展,主要做智能数据分析 并已成为智能数据分析技术的源泉之一 典型任务:预测(例如:天气预报);数据挖掘;美国航空航天局JPL实验室的科学家在《Science》(2001年9月)上撰文指出:机器学习对科学研究的整个过程正起到越来越大的支持作用,……,该领域在今后的若干年内将取得稳定而快速的发展;美国航空航天局JPL实验室的科学家在《Science》(2001年9月)上撰文指出:机器学习对科学研究的整个过程正起到越来越大的支持作用,……,该领域在今后的若干年内将取得稳定而快速的发展;入侵检测: 是否是入侵?是何种入侵?;常用技术: 神经网络 支持向量机 隐马尔可夫模型 贝叶斯分类器 k近邻 决策树 序列分析 聚类 …… ……;例子3:有哪些信誉好的足球投注网站引擎;美国的PAL计划;RADAR (Reflective Agents with Distributed Adaptive Reasoning),承担单位为CMU,首期7百万美元 目标:“the system will help busy managers to cope with time-consuming tasks” “RADAR must learn by interacting with its human master and by accepting explicit advice and instruction”;CALO (Cognitive Agent that Learns and Observes),承担单位为SRI,首期2千2百万美元 除SRI外,这个子计划的参加单位有20家: Boeing, CMU, Dejima Inc., Fetch Tech Inc., GATech, MIT, Oregon HSU, Stanford, SUNY-Stony Brook, UC Berkeley, UMass, UMich, UPenn, Rochester, USC, UT Austin, UW, Yale, … CALO无疑是PAL中更核心的部分;美国的PAL计划:CALO子计划 (2);美国的PAL计划:CALO子计划(3);历史回顾(1);历史回顾(2);历史回顾(3);从主要范式的发展可以看出,ML实际上是一个应用驱动的学科,其根本的驱动力是“更多、更好地解决实际问题” 由于近20年的飞速发展,机器学习已经具备了一定的解决实际问题的能力,似乎逐渐开始成为一种基础性、透明化的“支持技术、服务技术” 基础性:在众多的学科领域都得以应用(“无所不在”) 透明化:用户看不见机器学习,看见的是防火墙、生物信息、有哪些信誉好的足球投注网站引擎;(“无所不在??) “机器更好用了”(正如CALO的一些描述:“you won’t leave home without it”;”embodied as a software environment that transcends workstations, PDA’s, cell phones, …”);作为支持和服务技术的“普适机器学习”带来了挑战和机遇: 出现了很多被传统ML研究忽视、但非常重要且尚无好的解决方案的问题(下面将以医疗和金融为代表来举几个例子) ML支持和服务的学科领域越多,新问题越多 ML与众多学科领域产生了交叉,而交叉领域正是大有可为处;医疗:以乳腺癌诊断为例,“将病人误诊为健康人的代价”与“将健康人误诊为病人的代价”是不同的 金融:以信用卡盗用检测为例,“将盗用误认为正常使用的代价”与“将正常使用误认为盗用的代价”是不同的 传统的ML技术基本上只考虑同一代价 如何处理代价敏感性? 在教科书中找不到现成的答案,例如: Tom Mitchell, Machine Learning, McGraw-Hill, 1997 Nils J. Nilsson, Introduction to Machine Learning, draft 1996 - 2004;医疗:以乳腺癌诊断为例,“健康人”样本远远多于“病人”样本 金融:以信用卡盗用检测为例,“正常使用”样本远远多于“被盗用”样本 传统的ML技术基本上只考虑平衡数据 如何处理数据不平衡性? 在教科书中找不到现成的答案;医疗:以乳腺癌诊断为例,需要向病人解释“为什么做出这样的诊断” 金融:以信用卡盗用检测为例,需要向保安部门解释“为什么这是正在被盗用的卡” 传统的ML技术基本上只考虑泛化不考虑理解 如何处理可理解性?

文档评论(0)

yaocen + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档