纳米纤维素表征-制备及应用探究.docVIP

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
纳米纤维素表征-制备及应用探究

纳米纤维素表征\制备及应用探究1、前言 纤维素主要由植物的光合作用合成,是自然界取之不尽,用之不竭的可再生天然高分子,除了传统的工业应用外,任何交叉结合纳米科学、化学、物理学、材料学、生物学及仿生学等学科进一步有效地利用纤维素资源,开拓纤维素在纳米精细化工、纳米医药、纳米食晶、纳米复合材料和新能源中的应用,成为国内外科学家竞相开展的研究课题。 在纳米尺寸范围操纵纤维素分子及其超分子聚集体,设计并组装出稳定的多重花样,由此创制出具有优异功能的新纳米精细化工品、新纳米材料,成为纤维素科学的前沿领域[1]。 1.1 纳米纤维素的特性 纳米纤维素是令人惊叹的生物高聚物,具有其它增强相无可比拟的特点:其一,源于光合作用,可安全返回到自然界的碳循环中去;其二,既是天然高分子,又具有非常高的强度,杨式模量和张应力比纤维素有指数级的增加,与无机纤维相近。纳米管是迄今能生产的强度最高的纤维,纳米纤维素的强度约为碳纳米管强度的25%,有取代陶瓷和金属的潜质;其三,比表面积巨大,导致其表面能和活性的增大,产生了小尺寸、表面或界面、量子尺寸、宏观量子隧道等效应[2]。 1.2 纳米纤维素分类 纳米纤维素超分子以其形貌可以分为以下3类:纳米纤维素晶体(晶须)、纳米纤维素复合物和纳米纤维素纤维。 1.2.1 纳米纤维素晶体 利用强酸水解生物质纤维素,水解掉生物质纤维素分子链中的无定形区,保留结晶区的完整结构,可以制得纳米微晶纤维素。这种晶体长度为10nm~1μm,而横截面尺寸只有5~20nm,长径比约为1~100,并具有较高的强度。若再进一步对纳米微晶纤维素进行强酸水解处理或高强度超声处理,将会得到形态尺寸更加精细的纤维素纳米晶须[3],纳米晶须具有比纳米微晶纤维素更高的比表面积和结晶度,使其在对聚合物增强方面可发挥出更大的作用。 1.2.2 纳米纤维素复合物 纳米尺寸的纤维素用于复合物性能增强,归因于纳米纤维索高的杨氏模量和微纤丝的均匀分布。纳米纤维素复合物的强度高,热膨胀系数低,透光率高,环境友好,完全降解,源于可持续性资源,废弃后不伤害环境,同时能够容易处置或堆肥[4]。 普通有机聚合物膜片的杨式模量一般在5GPa以下,而纯纳米纤维素胶制成的干膜,其杨氏模量可超越15GPa。经热压处理后,纳米纤维素膜的杨氏模量可与金属铝相当,如此高的杨式模量是由于纳米级超细纤维丝的高结晶度和纤维之间的强大拉力所造成的。因此纳米纤维素复合物的强度高,热膨胀系数低,同时透光率高。 1.2.3 纳米纤维素纤维 纳米纤维素纤维是纤维素溶液中电纺纱制备直径为80―750nm的微细纤维素纤维。将纤维素连接溶解于乙二胺/硫氰酸盐、N-甲基吗啉-N-氧化物/N-甲基吡咯烷酮/水等纤维素溶剂中,调整溶剂系统、纤维素的分子量、纺纱条件和纺纱后处理可以获得微细的、干的、稳定的纳米纤维素纤维。既可以用作纺织的原材料,也可以用作超滤膜等膜分离。 2、纳米纤维素的制备 从制备来源来说,纳米纤维素可以分为植物纤维素、动物纤维素以及细菌纤维素,现在兴起的还有一种是纳米纤维素复合材料。 2.1 用细菌制备纳米纤维素 1886年,Brown首次报道了由木醋杆菌合成了一种胞外呈凝胶状的物质,但由于无合适的实验手段以及产量较低,因此未受到重视。直到20世纪中叶,人们才开始细菌纤维素的进一步研究。Hestrin[5]等人以木醋杆菌为模式菌,证实了在葡萄糖和氧气存在时醋酸菌合成了纤维素。1957年Colvin在含有木醋杆菌的非细胞抽提物、葡萄糖及ATP的样品中检测到了纤维素的合成。19世纪40年代细菌纤维素产品开始生产和利用,但直到1967年才确定凝胶状膜的化学本质是真正的、纯粹的细菌纤维素。 2.2 用植物制备纳米纤维素 相对于细菌纤维素来说,植物纤维素必须经过化学处理或者机械粉碎才能得到纳米尺度的纤维素。 2.2.1 物理处理 1980年,用高速搅拌机处理木浆,Thrbak等研究出了一种微纤维化的纤维素,得到了纳米级的网状结构的纤维素,其纤维直径在10―100nm之间,可以用于制备透明的高强度纳米复合物。将竹子纤维及其单纤维用石盘高速研磨,并结合热碱的预处理,Takahashi等以竹子为原料制得了微纤化的纤维素。 2.2.2 化学制备 最早的纳米纤维素胶体悬浮液是由Nickerson和Habde在1947年用盐酸和硫酸水解木材与棉絮制造出的,RaIlbv等在1952年用酸解的方法制备了纳米纤维素晶体。沿用这一方法,Favier等从1995年开始研究纤维素晶须增强的纳米复合物。Grav等从1997年起通过硫酸酸解棉花、木浆等原料获得了不同特性的纳米纤维素,并研究了其自组

文档评论(0)

linsspace + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档