- 1、本文档共13页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
snubber电路总结
电阻的用法
RC-SNUBBER电路
Snubber电路中文为吸收电路。公司的板子上,其最常应用场合如下图所示。
为了便于说明问题,将上图简化。
实际的没有snubber的电路中各点的波形如下图所示。
从上图的波形即客观现象表明在PHASE点会出现电压尖峰。这种尖峰会对L-MOS造成威胁,根据电源组同事的观察,有些板子的L-MOS经常烧坏或寿命大幅缩短,就是PHASE点电压尖峰造成的。实际测量没有SNUBBER的PHASE点波形如图所示(上图红圈内的波形放大)。
造成电压尖峰及其危害的原因是什么呢?为了更严谨更准确说明电路的工作情况设想模型如下。
上图分别是电路中寄生电感和MOS管极间等效电容的示意图。简化之后如下图。
上图虚线框内的是PHASE后的线路,由于有储能大电感的存在,瞬时变化的电流I不能通过进入虚线框内。所以对瞬时(高频)电压电流而言,其路径只能是通过L-MOS。为了验证这种设想的真实性,本文建立仿真模型进行验证。
电压源是一个上升沿模仿H-MOS导通的动作。电容模仿L-MOS的等效电容大概有500pF。
电感模仿电路上的寄生电感。电阻模仿线路上的等效电阻。仿真波形如下。红色为PHASE点电压,黄色为PHASE点电流,绿色为输入电压。
和实际没有snubber电路的PHASE点波形比较。可以发现两者在波形特征是很相似的。所以可以基本认为,设想的模型是能说明问题的。
分析产生电压尖峰的原因。将上图放大。得下图。红色为PHASE点电压,黄色为PHASE点电流,绿色为输入电压。
时间段1(30ns~A):H-MOS管导通,5V电压输入。寄生电感中的电流以正弦波的形式增大。同时这个增大的电流给L-MOS的等效电容充电,使得PHASE点的电压上升。
时间段2(A~B):当PHASE点电压达到5V时,则寄生电感两端的电压开始反向。但寄生电感中的电流不能瞬变,而是以正弦波的形式减小。这时这个减小的电流也在给L-MOS的等效电容充电,使得PHASE点的电压继续上升。
时间段3(B~C):当寄生电感中的电流减小到0时,L-MOS的等效电容刚好充电到最多的电荷形成PHASE点的电压极大值。此时PHASE点的电压大于输入电压,则电容开始放电PHASE点电压开始减小,电感的电流反向开始增大。
时间段4(C~D):当PHASE点电压减小到5V时,电感两端的电压有反向了,电流(标量)开始减小,电容中的点放完,但由于电感中的电流还存在,电容被反向充电。PHASE点电压继续下降。
综上所述,电压尖峰是由于寄生电感不能瞬变的电流给L-MOS等效电容充电造成的。而振荡是由于电感和电容的谐振造成的。实际电路中多余的能量大部分是由L-MOS的内阻消耗的。这部分多余的能量等于PHASE点电压为5V时,电流在电感中对应的电磁能。由于等效电容很小,所以多余能量(电荷)能够在电容两端造成较大的电压。所以减小电压尖峰的方法是减小流入等效电容的电荷数量。对于振荡则可以选择阻尼电阻一方面减少振荡次数,一方面减小L-MOS的消耗能量。
因此设计出了snubber电路。如图所示。
RC-snubber电路从两个方面去解决电压尖峰的问题。1、对PHASE点电压等于输入电压时的电感电流分流,这样使得流入L-MOS等效电容的电流大大减小。而snubber电容的容值选取较大,吸收了多余的能量后产生的电压不会太大。这样使得PHASE点的电压尖峰减小。2、RC中的电阻起到阻尼作用,将谐振能量以热能消耗掉。仿真结果如下
红色为PHASE点电压,黄色为PHASE点电流,绿色为输入电压。天蓝色为snubber分流的电流。
所以RC-snubber电路的好处有:1、增强phase点的信号完整性。2、保护L-MOS提高系统可靠性。3、改善EMI。坏处:1、PHASE点电压等于输入电压时需要更多的能量,所以在每次开关时都要消耗更多的能量,降低了电源转换效率。2、RC选取不好就会起反作用。
Snubber电路的位置选择。大家都知道snubber电路的摆放应该靠近PHASE点。但是有一个细节很有意思。看下图。
图中的寄生电感共4个,给L-MOS造成影响的是上面3个,snubber电路接在PHASE点上。现在有两个问题1、H-MOS管的等效电容也应该有相似的电压尖峰效应怎么办?2、snubber电路无法保护第三个寄生电感的造成的过压,可是为什么实际上的吸收效果却很好?
解释上面的问题,可以看一下这里用的MOS管封装便可知道。
在电容总结里讲过,寄生电感主要分布在引脚和走线上。在电源线路的PCB走线是又宽又短的,所以这里的寄生电感主要来源于引脚封装。MOS管的漏极宽大的设计就是为了能够减小寄生电感(当然也可以利于散热),而源极寄生电感在正向导通时不会对MOS管的等效电容造成威胁。
Snubber器
您可能关注的文档
最近下载
- 2023年江苏省苏州高新区招聘“两新”组织党建专职党务工作者6人考前自测高频考点模拟试题(共500题)含答案详解.docx VIP
- 2025腾讯视频综艺营销手册.docx
- 2024年人教高一主题班会课件:例1《开学第一课》(共47张PPT).ppt VIP
- 庞中华钢笔字帖(行楷)《必威体育精装版》.doc
- 实验小学学生写字水平考级活动方案及考级标准.docx
- Cinema4D动画实战项目教程高职全套完整教学课件.pptx
- 急性心肌梗死后心脏破裂早期临床识别与防治讲解.ppt
- 2024年教育行业商业计划书.docx
- 《哪吒之魔童闹海》开学第一课收心哪吒2主题班会课件课件(图文).pptx VIP
- 自旋霍尔效应.ppt
文档评论(0)