a personalized best characterization of latent clinical classes of nonischemic heart failure that predict outcomes and response to bucindolol个性化的最佳表征潜在的临床类的非缺血型心脏病bucindolol预测结果和反应.pdfVIP

a personalized best characterization of latent clinical classes of nonischemic heart failure that predict outcomes and response to bucindolol个性化的最佳表征潜在的临床类的非缺血型心脏病bucindolol预测结果和反应.pdf

  1. 1、本文档共15页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
a personalized best characterization of latent clinical classes of nonischemic heart failure that predict outcomes and response to bucindolol个性化的最佳表征潜在的临床类的非缺血型心脏病bucindolol预测结果和反应

A Personalized BEST: Characterization of Latent Clinical Classes of Nonischemic Heart Failure That Predict Outcomes and Response to Bucindolol 1 2 1 1 3 David P. Kao *, Brandie D. Wagner , Alastair D. Robertson , Michael R. Bristow , Brian D. Lowes 1 Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, 2 Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, 3 Division of Cardiology, University of Nebraska Medical Center, Omaha, NE Abstract Background: Heart failure patients with reduced ejection fraction (HFREF) are heterogenous, and our ability to identify patients likely to respond to therapy is limited. We present a method of identifying disease subtypes using high- dimensional clinical phenotyping and latent class analysis that may be useful in personalizing prognosis and treatment in HFREF. Methods: A total of 1121 patients with nonischemic HFREF from the b-blocker Evaluation of Survival Trial were categorized according to 27 clinical features. Latent class analysis was used to generate two latent class models, LCM A and B, to identify HFREF subtypes. LCM A consisted of features associated with HF pathogenesis, whereas LCM B consisted of markers of HF progression and severity. The Seattle Heart Failure Model (SHFM) Score was also calculated for all patients. Mortality, improvement in left ventricular ejection fraction (LVEF) defined as an increase in LVEF $5% and a final LVEF of 35% after 12 months, and effect of bucindolol on both outcomes were compared across HFREF subtypes. Performance of models that included a combination of LCM subtypes and SHFM scores towards predicting mortality and LVEF response was estimated

您可能关注的文档

文档评论(0)

qianqiana + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5132241303000003

1亿VIP精品文档

相关文档