a systems biology approach to transcription factor binding site prediction系统生物学方法转录因子结合位点预测.pdfVIP
- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
a systems biology approach to transcription factor binding site prediction系统生物学方法转录因子结合位点预测
A Systems Biology Approach to Transcription Factor
Binding Site Prediction
1. 2. 2 1,2,3
Xiang Zhou , Pavel Sumazin , Presha Rajbhandari , Andrea Califano *
1 Department of Biomedical Informatics (DBMI), Columbia University, New York, New York, United States of America, 2 Center for Computational Biology and
Bioinformatics (C2B2), Columbia University, New York, New York, United States of America, 3 Herbert Irving Comprehensive Cancer Center, Columbia University, New York,
New York, United States of America
Abstract
Background: The elucidation of mammalian transcriptional regulatory networks holds great promise for both basic and
translational research and remains one the greatest challenges to systems biology. Recent reverse engineering methods
deduce regulatory interactions from large-scale mRNA expression profiles and cross-species conserved regulatory regions in
DNA. Technical challenges faced by these methods include distinguishing between direct and indirect interactions,
associating transcription regulators with predicted transcription factor binding sites (TFBSs), identifying non-linearly
conserved binding sites across species, and providing realistic accuracy estimates.
Methodology/Principal Findings: We address these challenges by closely integrating proven methods for regulatory
network reverse engineering from mRNA expression data, linearly and non-linearly conserved regulatory region discovery,
and TFBS evaluation and discovery. Using an extensive test set of high-likelihood interactions, which we collected in order
to provide realistic prediction-accuracy estimates, we show that a careful integration of these methods lead
您可能关注的文档
- a protein's role in progressive renal disease一种蛋白质在进步的肾脏疾病中的作用.pdf
- a protein-protein interaction map of the trypanosoma brucei paraflagellar rod锥虫属的蛋白质交互地图brucei paraflagellar杆.pdf
- a prospective study of red and processed meat intake in relation to cancer risk红肉和加工肉类摄取量的前瞻性研究与癌症风险之间的关系.pdf
- a proteomic approach for the diagnosis of bacterial meningitis蛋白质组学的方法对细菌性脑膜炎的诊断.pdf
- a proteomic approach for comprehensively screening substrates of protein kinases such as rho-kinase全面的蛋白质组学方法筛选rho-kinase等基质的蛋白激酶.pdf
- a protein allergen microarray detects specific ige to pollen surface, cytoplasmic, and commercial allergen extracts过敏原蛋白质微阵列检测特定的ige花粉表面,细胞质,商业过敏原提取物.pdf
- a proteomic and cellular analysis of uropods in the pathogen entamoeba histolytica蛋白质组学和细胞分析病原体的腹足痢疾阿米巴.pdf
- a protocadherin-cadherin-flrt3 complex controls cell adhesion and morphogenesisprotocadherin-cadherin-flrt3复杂控制细胞粘附和形态发生.pdf
- a protocol for the secure linking of registries for hpv surveillance协议安全的链接注册的人乳头状瘤病毒监测.pdf
- a putative gene cluster from a lyngbya wollei bloom that encodes paralytic shellfish toxin biosynthesis从螺旋藻wollei公认的基因簇盛开,编码麻痹性贝类毒素生物合成.pdf
文档评论(0)