Wavelet Spectral Analysis - University of Colorado Boulder:小波功率谱分析-科罗拉多大学博尔德分校.ppt

Wavelet Spectral Analysis - University of Colorado Boulder:小波功率谱分析-科罗拉多大学博尔德分校.ppt

  1. 1、本文档共25页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Wavelet Spectral Analysis - University of Colorado Boulder:小波功率谱分析-科罗拉多大学博尔德分校

Summary Wavelets offer frequency-time localization of spectral power SAWP visualizes how power changes for a given scale or band as a time series “Band pass” reconstructions can be performed from the wavelet transform WARM is an attractive simulation method that captures spectral features Summary Cross wavelet transform can offer phase and coherence between data sets Additional Resources: /research/wavelets/ /~nowakkc/wave J is range of scales over which to reconstruct C and psi are empirically derived wavelet values * * Similar spectral results for K-NN * * * Denotes complex conjugate * Instead of top term being “average” across 2 time series, values from square of XWT are “point values” thus we need to smooth over some range in time and frequency to see how 2 data sets relate “locally” also, wavelet transforms must be normalized by scale. * Wavelet Spectral Analysis Ken Nowak 7 December 2010 Need for spectral analysis Many geo-physical data have quasi-periodic tendencies or underlying variability Spectral methods aid in detection and attribution of signals in data Fourier Approach Limitations Results are limited to global Scales are at specific, discrete intervals Per fourier theory, transformations at each scale are orthogonal Wavelet Basics Wf(a,b)= f(x) y(a,b) (x) dx ? Morlet wavelet with a=0.5 Function to analyze Integrand of wavelet transform |W(a=0.5,b=6.5)|2=0 |W(a=0.5,b=14.1)|2=.44 b=2 b=6.5 b=14.1 graphics courtesy of Matt Dillin ∫ Wavelets detect non-stationary spectral components Wavelet Basics Here we explore the Continuous Wavelet Transform (CWT) No longer restricted to discrete scales Ability to see “local” features Mexican hat wavelet Morlet wavelet Global Wavelet Spectrum |Wf (a,b)|2 function Wavelet spectrum a=2 a=1/2 Global wavelet spectrum Slide courtesy of Matt Dillin Wavelet Details Convolutions between wavelet and data can be computed simultaneously via convolution theorem. Wavelet transfor

文档评论(0)

小教资源库 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档