- 1、本文档共14页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
时间序列分析——ARMA模型实验
基于ARMA模型的社会融资规模增长分析
————ARMA模型实验
第一部分 实验分析目的及方法
一般说来,若时间序列满足平稳随机过程的性质,则可用经典的ARMA模型进行建模和预则。但是, 由于金融时间序列随机波动较大,很少满足ARMA模型的适用条件,无法直接采用该模型进行处理。通过对数化及差分处理后,将原本非平稳的序列处理为近似平稳的序列,可以采用ARMA模型进行建模和分析。
第二部分 实验数据
2.1数据来源
数据来源于中经网统计数据库。具体数据见附录表5.1 。
2.2所选数据变量
社会融资规模指一定时期内(每月、每季或每年)实体经济从金融体系获得的全部资金总额,为一增量概念,即期末余额减去期初余额的差额,或当期发行或发生额扣除当期兑付或偿还额的差额。社会融资规模作为重要的宏观监测指标,由实体经济需求所决定,反映金融体系对实体经济的资金量支持。
本实验拟选取2005年11月到2014年9月我国以月为单位的社会融资规模的数据来构建ARMA模型,并利用该模型进行分析预测。
第三部分 ARMA模型构建
3.1判断序列的平稳性
首先绘制出M的折线图,结果如下图:
图3.1 社会融资规模M曲线图
从图中可以看出,社会融资规模M序列具有一定的趋势性,由此可以初步判断该序列是非平稳的。此外,m在每年同时期出现相同的变动趋势,表明m还存在季节特征。下面对m的平稳性和季节性·进行进一步检验。
为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下:
图3.2 lm曲线图
对数化后的趋势性减弱,但仍存在一定的趋势性,下面观察lm的自相关图
表3.1 lm的自相关图
上表可以看出,该lm序列的PACF只在滞后一期、二期和三期是显著的,ACF随着滞后结束的增加慢慢衰减至0,由此可以看出该序列表现出一定的平稳性。进一步进行单位根检验,由于存在较弱的趋势性且均值不为零,选择存在趋势项的形式,并根据AIC自动选择之后结束,单位根检验结果如下:
表3.2 单位根输出结果
Null Hypothesis: LM has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=12) t-Statistic ??Prob.* Augmented Dickey-Fuller test statistic -8.674646 ?0.0000 Test critical values: 1% level -4.046925 5% level -3.452764 10% level -3.151911 *MacKinnon (1996) one-sided p-values.
单位根统计量ADF=-8.674646小于临界值,且P为0.0000,因此该序列不存在单位根,即该序列是平稳序列。
由于趋势性会掩盖季节性,从lm图中可以看出,该序列有一定的季节性,为了分析季节性,对lm进行差分处理,进一步观察季节性:
图3.3 dlm曲线图
观察dlm 的自相关表:
表3.3 dlm的自相关图
Date: 11/02/14 Time: 22:35 Sample: 2005M11 2014M09 Included observations: 106 Autocorrelation Partial Correlation AC? ?PAC ?Q-Stat ?Prob ????****|. | ????****|. | 1 -0.566 -0.566 34.934 0.000 ???????.|* | ??????**|. | 2 0.113 -0.305 36.341 0.000 ???????.|. | ???????*|. | 3 0.032 -0.093 36.455 0.000 ???????*|. | ???????*|. | 4 -0.084 -0.114 37.244 0.000 ???????.|* | ???????.|. | 5 0.105 0.015 38.494 0.000 ???????*|. | ???????*|. | 6 -0.182 -0.182 42.296 0.000 ???????.|* | ???????*|
文档评论(0)