Data Mining using Mahout SIEL@IIIT, Hyderabad(数据挖掘使用Mahout SIEL@IIIT,海德拉巴).pdf

Data Mining using Mahout SIEL@IIIT, Hyderabad(数据挖掘使用Mahout SIEL@IIIT,海德拉巴).pdf

  1. 1、本文档共26页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Data Mining using Mahout SIEL@IIIT, Hyderabad(数据挖掘使用Mahout SIEL@IIIT,海德拉巴)

Data Mining using Mahout Data Mining using Mahout Team No. 8 Pratibha Rani Prashant Sethia Manisha Verma What is Mahout? What is Mahout? Subproject of Apache Lucene ◦Goal: delivering scalable machine learning algorithm implementations ◦/mahout/ Version 0.1 released on 07 April 2009 includes 10 algorithm libraries ◦Details in published paper: /people/ang//paper s/nips06-mapreducemulticore.pdf Objective Objective Implement two Data Mining/Machine Learning algorithms ◦Convert the algorithm in MapReduce paradigm ◦Implement using Hadoop ◦Optimize computation take advantage of MapReduce paradigm Integrate them in Mahout Library ◦Make it available online. Implemented Algorithms Implemented Algorithms Classification of Multi Class data using Linear Discriminant Function (LDF) ◦Machine Learning method for classification ◦Computational cost increases as number of classes increase SPRINT ◦Decision tree based parallel classifier for Data Mining ◦ Requires parallelization of computations Decision Tree Example Decision Tree Example Attribute Lists Attribute Lists Algorithm Algorithm Algorithm (contd.) Algorithm (contd.) SPRINT: Introduction SPRINT: Introduction Carry out decision tree building process in parallel ◦ Frequent lookup of the central class list produces a lot of network communication in the parallel case ◦ Solution: Eliminate the class list Class labels distributed to each attribute list = Redundant data, but the memory-resident and network communication bottlenecks are removed Each node keeps its own set of a

您可能关注的文档

文档评论(0)

hhuiws1482 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:5024214302000003

1亿VIP精品文档

相关文档