网站大量收购闲置独家精品文档,联系QQ:2885784924

一种高效频繁子图挖掘算法2007,181024692480.pdf

  1. 1、本文档共12页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@ Journal of Software, Vol.18, No.10, October 2007, pp.2469−2480 DOI: 10. 1360/jos1 82469 Tel/Fax : +86-10 © 2007 by Journal of Software. All rights reserved. ∗ 一种高效频繁子图挖掘算法 + 李先通, 李建中 , 高 宏 (哈尔滨工业大学 计算机科学与技术学院,黑龙江 哈尔滨 150001) An Efficient Frequent Subgraph Mining Algorithm + LI Xian-Tong, LI Jiang-Zhong , GAO Hong (School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China) + Corresponding author: Phn: +86-451 E-mail: lijzh@, Li XT, Li JZ, Gao H. An efficient frequent subgraph mining algorithm. Journal of Softwar e, 2007,18(10) : 2469−2480. /1000-9825/18/2469.htm Abstract: With the successful development of frequent item set and frequent sequence mining, the technology of data mining is natural to extend its way to solve the problem of structural pattern mining —Frequent subgraph mining. Frequent patterns are meaningful in many applications such as chemistry, biology, computer networks, and World-Wide Web . In this paper we propose a new algorithm GraphGen for mining frequent subgraphs . GraphGen reduces the mining complexity through the extension of frequent subtree. For the best algorithm before, the 3 n complexity is O(n ·2 ), n is the number of frequent edges in a graph dataset. The complexity of GraphGen is ⎛ n2.5 ⎞ O⎜ 2n ⋅ ⎟, which is improved O( n ⋅log n) times than the best one. Experiment results prove this theoretical ⎜ ⎟ ⎝ log n ⎠ an

文档评论(0)

0520 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档