网站大量收购闲置独家精品文档,联系QQ:2885784924

浅析稀土氧化物弥散强化铁基钢合金.doc

  1. 1、本文档共22页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
氧化镧弥散强化铁基钢合金的制备及性能研究 二期阅读汇报 第一章 绪论 一、前言——延伸阅读《稀土氧化物掺杂钢合金工艺》 1.1固-固掺杂 在铁基体的粉末中直接添加稀土氧化物粉末,基体来自于高纯度的母合金锭制成的粉末,第二相即为纳米级稀土氧化物粉末。在制取掺杂粉末的过程中,一般采用机械混合法,用球磨机等设备将粉末机械地掺和均匀。掺杂粉末制取以后,再经压制成形、烧结、烧结后处理、轧制等工艺,最终制得所需的坯料、板材或线材等。在掺杂量比较大的情况下,固-固掺杂工艺是可行的,掺杂物可以比较均匀的分布在基体粉末中。它的优点是可以很好的控制掺杂量,生产周期短,易于组织生产及实现工业化。但是在掺杂量很少时,特别是制取低稀土钢材时,固-固掺杂就很难保证掺杂均匀,不均匀的粉末也就很难制出均匀的烧结坯,从而导致所制得的钢材性能不能达到理想要求。 1.2液-固掺杂 在掺杂量很少时,固-固掺杂很难保证掺杂的均匀性。为了解决这个问题,掺杂剂可以以溶液的方式掺杂在钢合金粉末中,即采用液-固掺杂方式。液-固掺杂是将稀土元素以稀土盐溶液的形式加入到钢合金粉中。在还原过程中,稀土盐分解,钢合金粉中的稀土元素以氧化物和稀土-铁复合氧化物的形式存在。掺杂钢合金粉末再经压制成形、烧结、烧结后处理、轧制等工艺,最终制得所需的坯料、板材或线材等。 液-固掺杂是在固-固掺杂的方法上发展起来的,无论是高稀土掺杂还是低稀土掺杂,都可以保证稀土元素分布较均匀,掺杂量容易控制。但液-固掺杂的后续工序长,生产周期也较长,设备投入多,加入调浆不均或烘干时出现偏析的话,它的均匀性还是不好的。 1.3液-液掺杂 稀土氧化物在铁基体中主要起弥散强化作用,因此,弥散相的均匀分布有着重要意义。固-固掺杂和液-固掺杂都难以充分保证稀土元素在基体中均匀分布。如果将掺杂基体和掺杂剂都以溶液方式混合在一起,基体和掺杂元素的均匀性就必然好得多。 稀土氧化物液-液掺杂是一种新技术,目前研究和报道的很少。 二、钢的热强性 2.1高温蠕变 金属在高温下长时间承受载荷时,工件在远低于抗拉强度的应力作用下会产生连续塑性变形,这是零件的失效形式往往不是断裂而是尺寸超过允许变形量,这种塑性变形称为蠕变。高温时,材料受力作用时间越长,它的强度值越低。热强行表示金属在高温和在和长时间作用下抵抗蠕变和断裂的能力,即高温强度。如图所示是典型的蠕变曲线。对于一定的材料,蠕变的大小是应力、温度和时间的函数。 蠕变曲线揭示了高温下金属强度本质的变化规律。可以认为,蠕变现象的本质是金属在高温和应力双重作用下金属强化和弱化(消强化)两个过程同时发生和发展的结果。在常温下,当金属承受的应力超过其屈服极限时,会发生变形,并由变形引起强化。当强化使强度与承受的应力相等时,会发生变形,并由变形引起强化。当强化时强度与承受的应力相等时,变形即告终止。这时,即使长时间承受应力,也不会有蠕变现象发生。可是如果金属受载时所处的温度超过该金属的再结晶温度,那么在形变强化的同时,金属组织中会发生回复及再结晶等一系列的消强化过程,则纯强化结果永远不能与外部载荷达到平衡,新的变形将持续产生,因而出现了蠕变现象。由于弱化过程需要一定的时间,所以蠕变的变形量也是时间的函数。 2.2表证材料的热强行指标 表征材料的热强性指标主要有以下几种: 蠕变极限:是指在一定温度下,在规定时间内使材料产生一定蠕变变形量的最大应力。如σ=68.6MN/m2,表示钢在550℃经10h工作或实验后,允许总变形量为1%时的应力为68.6MN/m2。 持久强度:是指在规定的温度下(T),材料达到规定的持续时间(τ)而不发生断裂的最大应力,通常用 σ表示,如σ表示在700℃下,经1000h后的破坏应力。 持久寿命:是指材料在某一定温度和规定应力作用下,从作用开始到拉断的时间,是表征材料在高温下对破断的抗力的指标。 应力松弛:材料在高温长期应力作用下,其总变形量不变,材料中的应力随时间增长而自发地逐渐下降的现象称为应力松弛。 机械疲劳:高温机械疲劳指金属材料抵抗高温疲劳能力的大小,用在一定温度下测得的疲劳极限来表示,疲劳极限表现一种材料对周期应力的承受能力。 热疲劳:航空发动机叶片、导向叶片、涡轮盘等零部件经常在温度急剧交变的情况下工作,同样,电厂中汽轮机的部件也会出现由于温度交变而造成的损坏现象。 三、耐热钢及耐热合金 3.1提高耐热钢高温强度的措施 从材料的强度与晶体结构出发,提高耐热钢高温强度的措施有以下几个: 强化基体,提高合金基体原子间的结构力,增大原子自扩散激活能。金属熔点越高,金属原子间结合将越强,耐热合金要选用熔点高的金属作为基体,铁基、镍基、钼基耐热合金的熔点依次升高。 采用面立方结构的钢或合金。因为面心立方晶格比体心立方晶格致密度大,结合力强,再结晶温度高。 强

您可能关注的文档

文档评论(0)

0520 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档