网站大量收购独家精品文档,联系QQ:2885784924

基于FDAtool及FPGA的FIR滤波器方案设计书.docVIP

基于FDAtool及FPGA的FIR滤波器方案设计书.doc

  1. 1、本文档共16页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于FPGA实现FIR滤波器的研究 摘要: 针对在FPGA中实现FIR滤波器的关键--乘法运算的高效实现进行了研究,给了了将乘法化为查表的DA算法,并采用这一算法设计了FIR滤波器。通过FPGA仿零点验证,证明了这一方法是可行和高效的,其实现的滤波器的性能优于用DSP和传统方法实现FIR滤波器。最后介绍整数的CSD表示和还处于研究阶段的根据FPGA实现的要求改进的最优表示。 关键词: FPGA DA FIR滤波器 CSD 数字滤波器是语音与图像处理、模式识别、雷达信号处理、频谱分析等应用中的一种基本的处理部件,它能满足波器对幅度和相位特性的严格要求,避免模拟乙波器所无法克服的电压漂移、温度漂移和噪声等问题。有限冲激响应(FIR)滤波器能在设计任意幅频特性的同时保证严格的线性相位特性。 目前FIR滤波器的实现方法有三种:利用单片通用数字滤波器集成电路、DSP器件和可编程逻辑器件实现。单片通用数字滤波器使用方便,但由于字长和阶数的规格较少,不能完全满足实际需要。使用DSP器件实现虽然简单,但由于程序顺序执行,执行速度必然不快。FPGA有着规整的内部逻辑阵列和丰富的连线资源,特别适合于数字信号处理任务,相对于串行运算为主导的通用DSP芯片来说,其并行性和可扩展性更好。但长期以来,FPGA一直被用于系统逻辑或时序控制上,很少有信号处理方面的应用,其原因主要是因为在FPGA中缺乏实现乘法运算的有效结构。现在这个问题得到了解决,使FPGA在数字信号处理方面有了长足的发展。 1 分布式运算原理 分布式算法(DA)早在1973年就已经被Croisier提出来了,但是直到FPGA出现以后,才被广泛地应用在FPGA中计算乘积和。 一个线性时不变网络的输出可以用下式表示: =c[0]x[0]+c[1]x[1]+…+c[N-1]x[N-1] 假设系数c[n]是已知常数,x[n]是变量,在有符号DA系统中假设变量x[n]的表达式如下: 式中,xb[n]表示z[叫的第b位,而x[n]也就是x的第n次采样。于是,内积y可以表示为: 重新分别求和(也就是分布式算法的由来),其结果如下: 从(1)式可以发现,分布式算法是一种以实现乘加运算为目的的运算方法。它与传统算法实现乘加运算的不同在于执行部分积运算的先后顺序不同。分布式算法在实现乘加功能时,是通过将各输入数据的每一对应位产生的部分积预先进行相加形成相应的部分积,然后再对各个部分积累加形成最终结果的,而传统算法是等到所有乘积已经产生之后再来相加完成乘加运算的。与传统串行算法相比,分布式算法可极大地减少硬件电路的规模,提高电路的执行速度。它的实现框图如图1(虚线为流水线寄存器)所示。 2 用分布式原理实现FIR滤波器 2.1 串行方式 当系统对速度的要求不高时,可以采用串行的设计方法,即采用一个DA表、一个并行累加器和少量的寄存器就可以了。 在用LUT实现串行分布式算法的时候,假设系数为8位,则DA表的规模为2N×8位。可以看到如果抽头系数N过多,则DA表的规模将十分庞大。这是因为LUT的规模随着地址空间的变化(也就是N的增加)而呈指数增加。例如EPFl0K20包含1152个LC,而一个27×7位的表就需要394个LC。当N过大时,一个FPGA器件就不够用了。 为了减小规模,可以利用部分表计算,然后将结果相加。假定长度为LN的内积为: 将和分配到L个独立的N阶并行DA的LUT之中结果如下: 如图2所示,实现一个4N的DA设计需要3个次辅助加法器。表格的规模从一个2 N×B位的LUT降到4个2 N×B的位表 如果再加上流水线寄存器,由于EPFl0K20每个LC后面都跟有一个寄存器,所以并没有增加电路规模,而速度却得到了提高。 2.2 并行方式 采用并行方式的好处是处理速度得到了提高。由于数据是并行输入,所以计算速度要比串行方式快,但它的代价是硬件规模更大了。下面举出全并行的例子。 设 sum[0]=c[0]x0+[0]+c[1]x0[1]+…+c[N-1]x0[N-1] sum[B-1]=c[B-1]xB-1[0]+c[1]xB-1[1]+…c[N-1]+xB-1[N-1] 可将(1)式改写成如下形式 y=sum[0]+sum[1]2 1+sum[2] 2+…+sum[B-1]2 B-1 (2) 利用式(2)可得一种直观的加法器树,如图3所示。 虽然硬件规模加大了,但是如果把系数的个数限制在4个或8个,再加上流水线寄存器,这个代价还是值得的。而且每张表都是相同的,不用为每个采样都设计一张表,减小了设计量。 DA算法的主要特点,是巧妙地利用ROM查找表将固定系数的MAC运算转化为查表操作,其运算速度不随系数和输入数据位数的增加而降低,而且相对直接实现乘法

您可能关注的文档

文档评论(0)

phl805 + 关注
实名认证
文档贡献者

建筑从业资格证持证人

该用户很懒,什么也没介绍

领域认证该用户于2023年05月12日上传了建筑从业资格证

1亿VIP精品文档

相关文档