TL431是一种高精度低温漂电压基准器件目前已得到广泛应用.DOC

TL431是一种高精度低温漂电压基准器件目前已得到广泛应用.DOC

  1. 1、本文档共16页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
TL431是一种高精度低温漂电压基准器件目前已得到广泛应用

TL431是一种高精度、低温漂电压基准器件,目前已得到广泛应用。TL431具有很高的电压增益,实际应用中易发生自激等问题,造成许多困惑,本文系统分析TL431的内部电路,并给出利用计算机分析计算的方法,使设计人员对关于TL431电路的稳定性有准确的整体把屋。 一、基本参数估计 (1)静态电流分配: TL431的最小工作电流为0.4mA,此时V10基本上没有电流(取0.03mA,be压降0.6)。 V9射极电流为0.6V/10k=0.06mA。 设V3的be压降为0.67V ,V1、V2的集电极电压均为0.67V,所计算时把R1、R2看作并联,,则算得V3射极电流为(2.5-0.67*2)/(3.28+2.4//7.2)=0.228mA。 剩余电流0.4-0.228-0.06-0.03=0.52mA,提供给V7、V8电流镜,V7、V8各获得0.04mA。 V4、V5、V6、V7、V8工作电流均为0.04mA。 (2)假内部三极管的fT值为100—200MHz,当工作电流小的时候fT为10—100MHz,由此间接估计三极管内部的等效电容。cb结电容均假设为1—2pF。V4、V7 、V8、V9等三极管工作电流小,所以fT要小很多(结电容为主,扩散电容较小)。 (3)V4、V5工作电流较小,通常小电流时电流放大倍数也较小。设V4的放大倍数为50倍左右。 (4)为方便计算,设V9、与V10的电流放大系数相同,V9、V10与电流增益直接相关,它们的放大倍数可由TL431数据表间接计算出来。 注1:晶体管的低频放大倍数与直流放大倍数是不相同的,静态工作电流小时二者相差不大,静态电流大时二者可能相差很大,具体与该晶体管的特性有关。 二、TL431带隙基准电压产生原理 带隙基准产生的原理不是本文要阐述的主要问题,但TL431内部的基准电路与增益和关,所以有必要对其分析。 1、Vbe压降在室温下有负温度系数约C=-1.9至-2.5mV/K,通常取-2mV/K,而热电压UT=DT在室温下有正温度系数D=0.0863 mV/K,将UT乘以适当倍率并与Vbe相加可大大消除温度影响。 注:UT=KT/q,式中K为波尔兹曼常数,T为绝对温标中的温度,q为单位电荷,常温下UT=26mV。 2、正温度系数电压基准的产生: (1)I2的性质: Is1、Is2与温度有关,但它们的比值基本上与温度无关,当I1/I2为常数,则a为常数,那么Ure、I2与热电压UT成正比,因Ud2与I2成正比,所以Ud2也与UT成正比,Ud2成为正温度系数的电压参考。Ube是负温度系数的电压参考,ΔU是V1、V2极电极压差,那么Ur=Ube+Ud2+ΔU,适当调整R2可使得Ube与Ud2温漂相互补偿,得到零温漂电压参考Uref=Ube+Ud2,Uref是一个特殊的内部电压参考,在电路中被分为二部分,中间被ΔU隔开。适当调整Ur,可使得ΔU=0,此时Ur=Uref,反之,当Ur≠Uref时,ΔU≠0。可见通过ΔU可察觉Ur是否与内部的Uref相等。通过深度负反馈电路调整Ur,容易使得ΔU=0,Ur=Uref,实际应用中,电路可能是浅反馈的,甚至是开环的,ΔU不一定为零,此时Ur与Uref存在一定的差值,设差值为Ui,通过分析I1与I2的微变关系可得到Ui与ΔU关系。 TL431内部的电压参考模型可理解为Ur=2Ube1+UR2+UR3+ΔU,Uref= 2Ube+UR2+UR3 Uref实际上是外推禁带能隙电压,外推到T=0时,Ud2=0,则Uref=Ube。 (2)I1与I2的微变关系: 设电路中V1、V2的be结微变电阻为r1、r2 可见当I1发生变化时,I2会跟着发生变化,但二者变化率是不相同的。因此I1变化时,Ud1与Ud2电压变化率也不相同,如果Ud1、Ud2的初值相同,当I1变化时,Ud1与Ud2将因变化率不同而产压差。微变电阻反映电压与电流的微变关系,并不反映温度与电流、电压的微变关系,所以温度引起的I1、I2变化不满足上一等式,实际上温度引起的I1变化不会造成I1、I2变化率不同,如果I1的变化是Ur引起的,那么上式成立。 空载时压差: 对于图(1) 图(2)计算麻烦一些,但结果类似,压差比图(1)的要小一半多。 可见a值越大压差越大。a值也不是越大越好,当a值大于2以后,压差增加不明显,而a值增大,意味关I2要减小很多(二者存在指数关系),对比较器的输入阻抗要求很高。通过调整Re可改变a。实际电路是有负载的,产生的压差要小一些。 3、温度补偿的计算: 对于TL431,设Ube1+Ube2的温度系数为-2*2=4mV/K,下文计算表明,由于电流变化造成V1、V2的be结分别多产生0.0863mV/K的正温度系数补偿,Ube1+Ube2的实际温度系数为(2-0.0863)*

文档评论(0)

wumanduo11 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档