网站大量收购闲置独家精品文档,联系QQ:2885784924

matlab关于矩阵分解与变换常用命令介绍.ppt

  1. 1、本文档共28页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
matlab关于矩阵分解与变换常用命令介绍

Rank of a Matrix rank(A) (the rank of a m-by-n matrix A) is The maximal number of linearly independent columns =The maximal number of linearly independent rows =The dimension of col(A) =The dimension of row(A) If A is n by m, then rank(A)= min(m,n) If n=rank(A), then A has full row rank If m=rank(A), then A has full column rank Inverse of a matrix Inverse of a square matrix A, denoted by A-1 is the unique matrix s.t. AA-1 =A-1A=I (identity matrix) If A-1 and B-1 exist, then (AB)-1 = B-1A-1, (AT)-1 = (A-1)T For orthonormal matrices For diagonal matrices Dimensions By Thomas Minka. Old and New Matrix Algebra Useful for Statistics Examples / Singular Value Decomposition (SVD) Any matrix A can be decomposed as A=UDVT, where D is a diagonal matrix, with d=rank(A) non-zero elements The fist d rows of U are orthogonal basis for col(A) The fist d rows of V are orthogonal basis for row(A) Applications of the SVD Matrix Pseudoinverse Low-rank matrix approximation Eigen Value Decomposition Any symmetric matrix A can be decomposed as A=UDUT, where D is diagonal, with d=rank(A) non-zero elements The fist d rows of U are orthogonal basis for col(A)=row(A) Re-interpreting Ab First stretch b along the direction of u1 by d1 times Then further stretch it along the direction of u2 by d2 times Low-rank Matrix Inversion In many applications (e.g. linear regression, Gaussian model) we need to calculate the inverse of covariance matrix XTX (each row of n-by-m matrix X is a data sample) If the number of features is huge (e.g. each sample is an image, #sample n#feature m) inverting the m-by-m XTX matrix becomes an problem Complexity of matrix inversion is generally O(n3) Matlab can comfortably solve matrix inversion with m=thousands, but not much more than that Low-rank Matrix Inversion With the help of SVD, we actually do NOT need to explicitly invert XTX Decompose X=UDVT Then XTX = VDUTUDVT = VD2VT Since V(D2)VTV(D2)-1VT=I We know that (XTX )-1= V(D2)-1VT Inver

文档评论(0)

xcs88858 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8130065136000003

1亿VIP精品文档

相关文档