网站大量收购独家精品文档,联系QQ:2885784924

基于Wiener核的智能优化递阶特征选择诊断方法-电测与仪表.DOC

基于Wiener核的智能优化递阶特征选择诊断方法-电测与仪表.DOC

  1. 1、本文档共4页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于Wiener核的智能优化递阶特征选择诊断方法-电测与仪表

非线性电路多软故障的智能优化递阶特征选择诊断方法* 张旭辉,王鑫磊,刘云峰,刘博,李冬明 (大学 学院,) 摘要:Wiener核后,采用智能优化算法对各状态的核特征进行特征选择,以代表各状态的特征构成的矢量的集总欧氏距离为评价函数,对集总欧氏距离的最大值进行寻优得到最优解;再对各个特征矢量间的距离进行判别,找到相互距离小于设定阈值的各个状态,构成次阶故障状态类,对该类故障状态采用前述的方法进行智能优化故障特征选择,得到次阶各状态的最优特征矢量;以此类推,直到得到满意的分辨率为止。实验表明,该方法有效地提高了多软故障诊断的准确率。 关键词: 中图分类号:TM933 文献标识码:B 文章编号:1001-1390(201)-0000-00 A?hierarchical?features?selection?and?diagnosis?method?of?intelligent ?optimization?for?multiple?soft?fault?of?nonlinear?circuit Zhang Xuhui, Wang Xinlei, Liu Yunfeng, Liu Bo, Li Dongming (School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China) Abstract:Aiming at the?accuracy?rate of?a diagnosis, caused by the similar characteristics of states in the multiple soft fault diagnoses of the nonlinear analog circuits, in case of not increasing the workload of circuit information collection, using the idea of hierarchical diagnosis, a hierarchical features selection method of intelligent optimization based on Wiener kernel is proposed. Firstly, after obtaining the Wiener kernel of various states of the circuit, this method selects the features of Wiener kernel of each state by intelligent optimization algorithm, considering the lumped Euclidean distance of vectorial constituted by?representative features of each state to be the evaluation function, and acquiring the optimal solution by optimizing maximum values of the lumped Euclidean distance. Then, this method distinguishes the distance of every pair of characteristic vectors to find those states where mutual distance is less than the set thresholds, constituting the fault condition class of the next order, and applying the intelligent optimization fault feature selection according to the fore-said method to this kind of fault, optimal feature vectors of each state of the next order will be obtained. By that analogy, a satisfactory resolution will be obtained. Experiments show that this method can effectively enha

文档评论(0)

2105194781 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档