抽样调查方法-SitesDuke.DOC

  1. 1、本文档共47页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
抽样调查方法-SitesDuke

抽样讲义 洪永泰 台湾大学政治学系 壹、导论    抽样的意思顾名思义,就是从全体之中抽取一部分个体做为样本,借着对样本的观察,再对全体做出推论。譬如说,我们想知道某个地区七岁到十二岁的小孩在除夕夜平均每人收了多少压岁钱,这些钱又跑到那里去了;或是我们的商品检验单位想要知道有一批货柜的棒球是不是每一个都符合使用标准;或是水库管理当局想要知道到底水库里有多少鱼。在理论上,我们当然可以不厌其烦地针对母体所有成员一个一个观察以取得数据,但在实际上我们知道这很不容易做到,事实上在有些情况下我们还非得做抽样调查不可。 为什么要抽样? (一)因为要节省经费,(二)因为要节省时间。这两个理由很容易了解,如果要访问全体,则所耗费的时间和经费是相当可观的,而且有许多调查性质具有时间性,如果拖得太长就会失去时效。例如想知道学生们对某一项考试的反应如何,就非得打铁趁热,在短时间内完成调查不可。(三)因为要提高资料的准确性,这是由于全体调查牵涉到相当大量而又繁杂的作业,动员不少人力、物力和行政管道,增加许多犯错的机会,导致取得的数据质量不佳,而抽样调查工作涉及的作业负担相对地轻松许多,参与人员因为较少,好控制,使得数据的品质也较好。事实上联合国的专家们也发现,在一些教育较不发达的地区,人口普查的资料就不如抽样调查来得好。(四)因为要取得较详尽的数据,譬如我们想要知道七岁到十二岁小孩的压岁钱流到那里去,如果进行全体调查的话,由于人力和物力的限制,我们只能针对每一个小孩取得一点点资料,但是如果是抽样调查,则因为调查对象不多,反而可以很从容的取得细节资料提供分析之用。每十年一次的人口普查,除了全体都查之外,总是还要再抽取少数样本做更详尽的访问就是这个道理。(五)因为要减轻损失,例如汽车车身的耐撞试验,罐头食品的安全检查,或是电灯泡寿命的质量管理检验。这些调查本身就具有破坏性,总不能每部汽车都撞一撞,或是每个罐头都打开检查,这种情形非得进行抽样检验不可,而且样本数目还要控制到越少越好。 二、机率抽样与非机率抽样 在谈抽样设计之前,让我们先厘清一下这里所谈的抽样是指机率抽样,也就是说:「在完整定义的母体之中,每一个个体都有一个不为零的中选机会」。凡不属于这个定义范围的都是非机率抽样。常见的非机率抽样方法,综合Kish(1965)和Cochran(1977)的说法,有下列几种:   (一)偶遇样本(haphazard sample)或便利抽样(convenient sample),是碰到谁就选谁的抽样,做研究的人并不在乎调查对象是否有代表性,例如生物学家解剖青蛙,心理学家观察人们对声光刺激的反应,医生征求自愿者做药物反应的实验等等。   (二)立意选样(purposive sampling)或判断选样(judgment sampling),这是经由专家主观判断,立意选定他们认为「有代表性」的样本来观察。例如人类学家或社会学家会选定一个或几个村庄来代表乡村地区,交通专家选定几个路口来计算交通流量,教育专家选定几个学校班级的学生来代表所有的学生等等。   (三)自愿样本(volunteer subjects),听任自动送上门来的人组成样本群。   (四)配额选样(quota sampling),依照母体的人口特征按比例分配样本数,在配额之内进行非机率抽样,也就是把调查对象依照特征分类后,根据各类别的百分比每类立意选样至额满为止。例如某个地区七岁到十二岁的小孩之中,约有一半是男的,另一半是女的,有四分之一住在都市,四分之三住在乡村。如果样本数是一千,则根据上述各类别的比例先算出各种特征交叉汇编后每一组合的配额,在配额内立意选出符合该类别的人即可。这样做可以节省时间和资源,而又维持了样本的「代表性」。   (五)雪球抽样(snowballed sample),先找到原始受访者,然后再从受访者所提供的信息找到其它受访者。   以上这些非机率抽样方法由于没有机率做推论基础,大多只能做描述性的用途,而不能对全体做科学的估计或验证理论的假设检定,因为它们提不出确切的误差数据,无法计算样本数据的准确程度。 贰、抽样的基本原理    假设某个地区七岁到十二岁的小孩共有两百四十万人,如果我们要抽取一千个人来调查有关他们的压岁钱收入和支出情形,怎么抽才会「准」呢?用常识来判断,总要有一些都市人,一些乡下人,要男生,也要女生,要富豪子弟,也要清寒子弟等等。这些顾虑都是担心万一抽得不好,变成瞎子摸象,整个推论就失效了。   在谈抽样原理之前,首先让我们先熟悉几个名词和符号。 资料的中心点和离散程度:平均数和标准差   大家都知道平均数是什么,它是所有个案观察值的总和除以累加的个案数,也就是我们通常说的一组资料的中心点。我们把全体的平均数写成μ(念成mu)。它的定义是

您可能关注的文档

文档评论(0)

2105194781 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档