- 1、本文档共7页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
1 多目标无功优化模型 - 电测与仪表
基于蜜蜂双种群进化型云自适应遗传算法的电力系统多目标无功优化
周海忠1,春渝,周岐杰,彭章刚,王精卫四川大学 电气信息学院,成都 610065. 国网四川达州供电公司,四川 达州 635000)
摘要:。最后通过算例仿真,仿真结果文章所提算法
关键词:;;;;
中图分类号:TM933 文献标识码:B 文章编号:1001-1390(201)00-0000-00
ulti-objective reactive power optimization for power system based on double bee population evolutionary cloud adaptive genetic algorithm
Zhou Haizhong1, Zhou Buxiang1, He Chunyu2, Zhou Qijie2, Peng Zhanggang1, Wang Jingwei
(1.School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China.
2. State Grid Dazhou Power Supply Company, Dazhou 635000, Sichuan, China)
Abstract: In this paper, a double bee population evolutionary cloud adaptive genetic algorithm (BEPE-CAGA) is proposed to cope with the limitation of genetic algorithms in solving the multi-objective reactive power optimization. Based on double bee population evolutionary thought, after the introduction of competition to participate in a cross by drones and drones and decided doublets excellent cross bee genetic strategies, and then, in combination of the normal cloud model cloud droplet characteristics of randomness and stable tendency, this algorithm solved the problem of premature convergence of genetic algorithm and?speeded up the convergence speed. This paper established a reactive power optimization mathematical model with minimum active power loss, voltage deviation minimum and maximum voltage stability margin goals, and BEPE-CAGA algorithm was used to solve the model. Finally, the examples simulation results of IEEE14 and IEEE30 node system verify the effectiveness of the proposed algorithm, as well as proved that the algorithm was better than the basic GA algorithm and CAGA algorithm performance on the convergence speed and optimization results.
Keywords: double bee population evolutionary, cloud adaptive, multi-objective, reactive power optimization, genetic algorithm 0 引 言
近几年,国内外学者们通过对电力系统无功优化问题的不断研究,取得了一定的成就。目前常用的解决电力系统无功优化问题的方法包括:线性规划与非线性规划法、内点法[1]、蚁群算法[2]、遗
文档评论(0)