MATLAB运动模糊图像处理.docVIP

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于MATLAB的运动模糊图像处理 提醒: 我参考了文献里的书目和网上的一些代码而完成的,所以误差会比较大,目前对于从网上下载的模糊图片的处理效果很不好,这是我第一次上传自己完成的实验的文档,希望能帮到一些人吧。 研究目的 在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦察和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。但是相对于散焦模糊,运动模糊图像的复原在日常生活中更为普遍,比如高速运动的违规车辆的车牌辨识,快速运动的人群中识别出嫌疑人、公安刑事影像资料中提取证明或进行技术鉴定等等,这些日常生活中的重要应用都需要通过运动模糊图像复原技术来尽可能地去除失真,恢复图像的原来面目。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 图像复原原理 本文探讨了在无噪声的情况下任意方向的匀速直线运动模糊图像的复原问题,并在此基础上讨论了复原过程中对点扩散函数(PSF)的参数估计从而依据自动鉴别出的模糊方向和长度构造出最为近似的点扩散函数,构造相应的复原模型,实现运动模糊图像的复原;在模糊图像自动复原的基础上,根据恢复效果图的纹理特征和自动鉴别出的模糊长度和角度,人工调整模糊方向和长度参数,使得复原效果达到最佳。 实验过程 模糊方向的估计: 对图1(a)所示的原始图像‘车牌’图像做方向=,长度L=20像素的匀速直线运动模糊,得到退化图像如图1(b) 1(a) 1(b) j=imread(车牌1.jpg); figure(1),imshow(j); title(原图像); len=20; theta=30; psf=fspecial(motion,len,theta); j1=imfilter(j,psf,circular,conv); figure,imshow(j1); title(PSF模糊图像); 图1(c)和1(d)分别为原图像和模糊图像的二次傅里叶变化 1(c) 1(d) J=rgb2gray(j); K=fft2(J);%傅里叶变换 M=fftshift(K);%直流分量移到频谱中心 N=abs(M);%计算频谱幅值 P=(N-min(min(N)))… /(max(max(N))-min(min(N)))*225;%归一化 figure,imshow(P); title(傅里叶变换频谱); J1=rgb2gray(j1); K1=fft2(J1);%傅里叶变换 M1=fftshift(K1);%直流分量移到频谱中心 N1=abs(M1);%计算频谱幅值 P1=(N1-min(min(N1)))/(max(max(N1))… -min(min(N1)))*225;%归一化 figure,imshow(P1); title(傅里叶变换频谱); 利用图1(d)粗略的计算模糊的方向,可以通过matlab自带的画线工具,选取如下图1(e)所示的三角形,计算a与c之间的夹角 Matlab命令窗口输:ginput 选中三个顶角后回车,可得数据 ans = 136.6009 146.3977 137.4205 166.8895 145.2074 166.8895 粗略取值后,经Matlab计算得: atan(20/9)*180/pi ans = 65.7723 则运动方向为90-ans≈25(误差为5)。 1(e) 模糊长度的估计 运动模糊图像中,在运动方向上大多数模糊图像的背景像素点具有很强的相关性,即沿着运动模糊的轨迹,背景像素点的灰度值逐渐变化或者不变。通过文献的学习,先对模糊图像进行一阶微分,然后进行自相关运算,可得一条鉴别曲线,曲线上会出现对称的相关峰,峰值为负,两相关峰之间的距离等于运动模糊长度。 把模糊图像转换为灰度图像,采用Sobel算子对其进行一阶微分运算,Sobel算子 其自相关曲线如图2(a)所示。利用matlab的Data Cursor可以测得两负峰之间的距离为20个像素点,此为运动模糊的长度,与理论值吻合(比较精确)。由于长度的测量计较精确,可以根据长度对运动模糊方向进行不同的取值,达到最好效果。 f1=rgb2gray(j1); f1=im2double(f1); h = fspecial(Sobel); %Sobel算子 J = conv2(f1,h,same); %Sobel算子微分 IP=abs(fft2(J)); %图像能量谱密

文档评论(0)

ipad0c + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档