- 1、本文档共34页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
为什么深度神经网络适合语音识别
Why Deep Neural Network
Works for Speech Recognition?
Hui Jiang
Department of Electrical Engineering and Computer Science
Lassonde School of Engineering, York University, CANADA
Joint work with Y. Bao, J. Pan, O. Abdel-Hamid
Outline
• Introduction
o Automatic Speech Recognition (ASR)
o Deep Neural Network (DNN)
• DNN/HMM for Speech
• Bottleneck Features
• Incoherent Training
• Conclusions
Introduction: ASR History
• ASR formulation:
o GMM/HMM + n-gram + Viterbi search
• Technical advances (incremental) over past 10 years:
o Adaptation (speaker/environment): 5% rel. gain
o Discriminative Training: 5-10% rel. gain
o Feature normalization: 5% rel. gain
o ROVER: 5% rel. gain
• More and more data better and better accuracy
o read speech (90%), telephony speech (70%)
o meeting/voicemail recording (60%)
Acoustic Modeling: Optimization
• Acoustic modeling large-scale optimization
o 2000+ hour data GMMs/HMM
billions of samples 10+ million free parameters
• Training Methods
o Maximum Likelihood Estimation (MLE)
o Discriminative Training (DT)
• Engineering Issues
o Efficiency: feasible with 100-1000 of CPUs
o Reliability: robust estimation of all parameters
Neural Network for ASR
• 1990s: MLP for ASR (Bourlard and Morgan, 1994)
o NN/HMM hybrid model (worse than GMM/HMM)
• 2000s: TANDEM (Hermansky, Ellis, et al., 2000)
o Use MLP as Feature Extraction (5-10% rel. gain)
• 2006: DNN for small tasks (Hinton et al., 2006)
o RBM-based pre-training for DNN
• 2010: DNN for small-scale ASR (Mohamed, Yu, et al. 2010)
• 2011: DNN for large-scale ASR
o Over 30% rel. gain in Switchboard (Seide et al., 2011)
Deep Neural Network (DNN)
DNN Training (I)
Given a
文档评论(0)