基于贝叶斯结构的.docVIP

  1. 1、本文档共12页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于贝叶斯结构的

基于贝叶斯网络的老年重症患者的预后评估 曾安1 李晓兵1 潘丹2 广东工业大学计算机学院,广州,510006; 2.美国Batteries Plus公司, 哈特兰市,威斯康辛州 53029) 摘 要:在重症患者中,老年人占有较大比例占用ICU)资源但治疗预后却不明确因此,研究老年人在ICU中的简化问题,贝叶斯网络随机变量之间的非线性),模型结果易于理解高龄患者中受益ICU资源的配置An Evaluation Model of the Prognosis for Elderly Critical Patients Based on Bayesian Network Zeng An1, Li Xiaobing1, PAN Dan2 Computer institute of Guangdong university of technology, Guangdong, 510006; Batteries Plus LLC., Hartland, Wisconsin, U.S.A, 53029) Abstract: In critically ill patients, the elderly account for a large proportion and take up more ICU resources, but the treatment effect and prognosis are not clear. Therefore, prognosis research for elderly critical patients is important. At present, most research focuses on the prognostic factors by using the regression analysis which often assumes a linear relationship between death and various risk factors for the sake of simplifying problems. The Bayesian networks are an effective tool for uncertain reasoning and nonlinear analysis, and the generated model results are comprehensible. In this paper, an evaluation model of the prognosis for elderly critical patients based on Bayesian network was constructed. Firstly, a Bayesian approach based on Minimum Description Length (MDL) and K2 algorithm was proposed to obtain the optimal network structure, and then the maximum likelihood method is used for estimation parameter learning. At last, Bayesian inference is employed to get the final prediction results. Four-fold cross sampling results show that the prediction accuracy of the model presented in this paper is superior to conventional BP neural networkand K2 algorithm based on Bayesian learning method And the prediction accuracy has been improved by 6.43% and 27.2%, It is helpful for the doctors to calculate the degree of elderly patients benifited from ICU cure and to estimate the allocation of ICU resoures. Key words: Bayesian networks; estimation parameter learning; evaluation of the

文档评论(0)

zhuwo + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档